Page 85 - Handbook Of Integral Equations
P. 85

x
               25.        arctan(λx) – arctan(λt) y(t) dt = f(x).
                      a
                     Solution:
                                               2  x


                                2       1   d             ϕ(t)f(t) dt               1
                          y(x)=  ϕ(x)               √                   ,  ϕ(x)=         .
                                π      ϕ(x) dx   a    arctan(λx) – arctan(λt)    1+ λ x
                                                                                      2 2
                         x       y(t) dt
               26.       √                      = f(x).
                      a   arctan(λx) – arctan(λt)
                     Solution:
                                      λ d     x     ϕ(t)f(t) dt                1
                                y(x)=         √                    ,  ϕ(x)=        .
                                                                                2 2
                                      π dx  a   arctan(λx) – arctan(λt)     1+ λ x
                         x  √         x – t
               27.        t arctan         y(t) dt = f(x).
                      a                t
                     The equation can be rewritten in terms of the Gaussian hypergeometric function in the form

                          x        	          x
                                                                                          3
                                                                           1
                          (x – t) γ–1 F α, β, γ;1 –  y(t) dt = f(x),  where  α = ,  β =1,  γ = .
                                                                                          2
                                                                           2
                        a                     t
                     See 1.8.86 for the solution of this equation.
                       x

                                               µ
               28.       arctan(λx) – arctan(λt)  y(t) dt = f(x),  0 < µ <1.
                      a
                     Solution:
                                                       2
                                                1  d             ϕ(t)f(t) dt
                                                          x
                                  y(x)= kϕ(x)                                   ,
                                              ϕ(x) dx      [arctan(λx) – arctan(λt)] µ
                                                         a
                                                     1          sin(πµ)
                                            ϕ(x)=         ,  k =      .
                                                  1+ λ x          πµ
                                                      2 2
                       x

                              µ            µ
               29.       arctan (λx) – arctan (λt) y(t) dt = f(x).
                      a
                                                                  µ
                     This is a special case of equation 1.9.2 with g(x) = arctan (λx).
                                                  2 2

                                       1 d     (1 + λ x )f (x)
                                                       x
                        Solution: y(x)=            µ–1      .
                                       λµ dx  arctan  (λx)
                       x
                                 y(t) dt

               30.                              µ  = f(x),  0 < µ <1.
                      a  arctan(λx) – arctan(λt)
                     Solution:
                                 λ sin(πµ) d     x     ϕ(t)f(t) dt                 1
                           y(x)=                                       ,  ϕ(x)=        .
                                                                                    2 2
                                     π    dx  a  [arctan(λx) – arctan(λt)] 1–µ  1+ λ x
                       x

                                β              γ
               31.       A arctan (λx)+ B arctan (µt)+ C y(t) dt = f(x).
                      a
                                                                                       γ
                                                                   β
                     This is a special case of equation 1.9.6 with g(x)= A arctan (λx) and h(t)= B arctan (µt)+C.
                 © 1998 by CRC Press LLC






                © 1998 by CRC Press LLC
                                                                                                             Page 63
   80   81   82   83   84   85   86   87   88   89   90