Page 82 - Handbook Of Integral Equations
P. 82

x


               3.        A arccos(λx)+ B arccos(µt)+ C y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.6 with g(x) = arccos(λx) and h(t)= B arccos(µt)+ C.
                       x

                                               n
               4.        arccos(λx) – arccos(λt)  y(t) dt = f(x),  n =1, 2, ...
                      a
                     The right-hand side of the equation is assumed to satisfy the conditions f(a)= f (a)= ··· =

                                                                                     x
                     f (n) (a)=0.
                      x
                        Solution:
                                               (–1) n     √         d    n+1
                                                                2 2
                                     y(x)=      √           1 – λ x       f(x).
                                                     2 2
                                            n
                                           λ n!  1 – λ x           dx
                         x
               5.         arccos(λt) – arccos(λx) y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.38 with g(x)=1 – arccos(λx).
                        Solution:
                                             2  x
                              2       1   d             ϕ(t)f(t) dt                   1


                        y(x)=  ϕ(x)               √                    ,    ϕ(x)= √        .
                              π      ϕ(x) dx   a    arccos(λt) – arccos(λx)         1 – λ x
                                                                                        2 2
                       x
                                 y(t) dt
               6.        √                      = f(x).
                      a   arccos(λt) – arccos(λx)
                     Solution:
                                    λ d     x     ϕ(t)f(t) dt                   1
                              y(x)=         √                    ,    ϕ(x)= √        .
                                    π dx  a   arccos(λt) – arccos(λx)         1 – λ x
                                                                                  2 2
                       x

                                               µ
               7.        arccos(λt) – arccos(λx)  y(t) dt = f(x),  0 < µ <1.
                      a
                     Solution:
                                                       2
                                                          x
                                                1  d             ϕ(t)f(t) dt
                                  y(x)= kϕ(x)                                    ,
                                              ϕ(x) dx      [arccos(λt) – arccos(λx)] µ
                                                         a
                                                     1           sin(πµ)
                                           ϕ(x)= √        ,  k =       .
                                                       2 2
                                                   1 – λ x         πµ
                         x
                              µ            µ
               8.        arccos (λx) – arccos (λt) y(t) dt = f(x).
                      a
                                                                   µ
                     This is a special case of equation 1.9.2 with g(x) = arccos (λx).
                                                   √
                                        1 d     f (x) 1 – λ x
                                                         2 2

                                                x
                        Solution: y(x)= –                    .
                                        λµ dx  arccos µ–1 (λx)
                       x
                                 y(t) dt
               9.                               µ  = f(x),  0 < µ <1.
                      a  arccos(λt) – arccos(λx)
                     Solution:
                               λ sin(πµ) d     x     ϕ(t)f(t) dt                    1
                         y(x)=                                       ,    ϕ(x)= √        .
                                   π    dx  a  [arccos(λt) – arccos(λx)] 1–µ      1 – λ x
                                                                                      2 2
                         x
                                β              γ
               10.       A arccos (λx)+ B arccos (µt)+ C y(t) dt = f(x).
                      a
                                                                                       γ
                                                                   β
                     This is a special case of equation 1.9.6 with g(x)=A arccos (λx) and h(t)=B arccos (µt)+C.
                 © 1998 by CRC Press LLC

                © 1998 by CRC Press LLC
                                                                                                             Page 60
   77   78   79   80   81   82   83   84   85   86   87