Page 80 - Handbook Of Integral Equations
P. 80

x

                             β           γ
               104.      A sin (λx)+ B cos (µt) y(t) dt = f(x).
                      a
                                                                                    γ
                                                                  β
                     This is a special case of equation 1.9.6 with g(x)= A sin (λx) and h(t)= B cos (µt).
                         x
                            λ   µ      β   γ
               105.      Ax cos t + Bt sin x y(t) dt = f(x).
                      a
                                                                  λ
                                                                             µ
                                                                                           γ
                     This is a special case of equation 1.9.15 with g 1 (x)= Ax , h 1 (t) = cos t, g 2 (x)= B sin x,
                               β
                     and h 2 (t)= t .
                         x
                            λ   µ      β   γ
               106.      Ax sin t + Bt cos x y(t) dt = f(x).
                      a
                                                                             µ
                                                                  λ
                                                                                           γ
                     This is a special case of equation 1.9.15 with g 1 (x)= Ax , h 1 (t) = sin t, g 2 (x)= B cos x,
                               β
                     and h 2 (t)= t .
                       x

                                                  2
               107.      (x – t) sin[λ(x – t)] – λ(x – t) cos[λ(x – t)] y(t) dt = f(x).
                      a
                     Solution:
                                                          x

                                                  y(x)=    g(t) dt,
                                                         a
                     where
                                                2       6    t
                                       π  1    d     2          5/2
                              g(t)=               + λ      (t – τ)  J 5/2 [λ(t – τ)] f(τ) dτ.
                                      2λ 64λ 5  dt 2      a
                         x    sin[λ(x – t)]
               108.                  – λ cos[λ(x – t)] y(t) dt = f(x).
                      a      x – t
                     Solution:
                                                  2       3    x
                                            1    d     2
                                     y(x)=          + λ       sin[λ(x – t)]f(t) dt.
                                           2λ 4  dx 2       a
                         x    √         √          √

               109.      sin λ x – t – λ x – t cos λ x – t  y(t) dt = f(x),  f(a)= f (a)=0.

                                                                                  x
                      a
                     Solution:                                √
                                               4  d 3     x  cosh λ x – t
                                        y(x)=               √         f(t) dt.
                                                3
                                              πλ dx 3  a      x – t
                       x


               110.      A tan(λx)+ B cot(µt)+ C y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.6 with g(x)= A tan(λx) and h(t)= B cot(µt)+ C.
                       x

                              2          2
               111.      A tan (λx)+ B cot (µt) y(t) dt = f(x).
                      a
                                                                                    2
                                                                  2
                     This is a special case of equation 1.9.6 with g(x)= A tan (λx) and h(t)= B cot (µt).
                         x

               112.      tan(λx) cot(µt) + tan(βx) cot(γt) y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.15 with g 1 (x) = tan(λx), h 1 (t) = cot(µt), g 2 (x) = tan(βx),
                     and h 2 (t) = cot(γt).
                 © 1998 by CRC Press LLC








                © 1998 by CRC Press LLC
                                                                                                             Page 58
   75   76   77   78   79   80   81   82   83   84   85