Page 78 - Handbook Of Integral Equations
P. 78

x

                             µ         µ
               90.       A cot x + B cot t y(t) dt = f(x).
                      a
                                                                                           µ
                     For B = –A, see equation 1.5.89. This is a special case of equation 1.9.4 with g(x) = cot x.
                        Solution:
                                           1   d         Aµ     x       Bµ
                                   y(x)=             tan x   A+B    tan t   A+B  f (t) dt .

                                                                         t
                                         A + B dx            a
                       x

                            β       γ
               91.       Ax + B cot (λt)+ C]y(t) dt = f(x).
                      a
                                                                β
                                                                               γ
                     This is a special case of equation 1.9.6 with g(x)= Ax and h(t)= B cot (λt)+ C.
                       x

                             γ         β
               92.       A cot (λx)+ Bt + C]y(t) dt = f(x).
                      a
                                                                                  β
                                                                  γ
                     This is a special case of equation 1.9.6 with g(x)= A cot (λx) and h(t)= Bt + C.
                         x
                            λ   µ      β   γ
               93.       Ax cot t + Bt cot x y(t) dt = f(x).
                      a
                                                                             µ
                                                                                           γ
                                                                  λ
                     This is a special case of equation 1.9.15 with g 1 (x)= Ax , h 1 (t) = cot t, g 2 (x)= B cot x,
                               β
                     and h 2 (t)= t .
                 1.5-5. Kernels Containing Combinations of Trigonometric Functions

                         x

               94.       cos[λ(x – t)] + A sin[µ(x – t)] y(t) dt = f(x).
                      a
                     Differentiating the equation with respect to x followed by eliminating the integral with the
                     cosine yields an equation of the form 2.3.16:

                                                 x

                                            2
                                  y(x) – (λ + A µ)  sin[µ(x – t)] y(t) dt = f (x) – Aµf(x).

                                                                     x
                                                a
                         x

               95.       A cos(λx)+ B sin(µt)+ C y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.6 with g(x)= A cos(λx) and h(t)= B sin(µt)+ C.
                         x

               96.       A sin(λx)+ B cos(µt)+ C y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.6 with g(x)= A sin(λx) and h(t)= B cos(µt)+ C.

                       x

                             2           2
               97.       A cos (λx)+ B sin (µt) y(t) dt = f(x).
                      a
                                                                                    2
                                                                  2
                     This is a special case of equation 1.9.6 with g(x)= A cos (λx) and h(t)= B sin (µt).

                 © 1998 by CRC Press LLC









                © 1998 by CRC Press LLC
                                                                                                             Page 56
   73   74   75   76   77   78   79   80   81   82   83