Page 77 - Handbook Of Integral Equations
P. 77

1.5-4. Kernels Containing Cotangent


                         x

               82.       cot(λx) – cot(λt) y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.2 with g(x) = cot(λx).
                                        1 d    2
                        Solution: y(x)= –    sin (λx)f (x) .
                                                    x
                                        λ dx
                       x


               83.       A cot(λx)+ B cot(λt) y(t) dt = f(x).
                      a
                     For B = –A, see equation 1.5.82. This is a special case of equation 1.9.4 with g(x) = cot(λx).
                                         1   d            A     x       B
                        Solution: y(x)=          tan(λx)  A+B   tan(λt)  A+B  f (t) dt .

                                                                            t
                                       A + B dx               a
                         x

               84.       A cot(λx)+ B cot(µt)+ C y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.6 with g(x)= A cot(λx) and h(t)= B cot(µt)+ C.
                         x
                           2         2
               85.       cot (λx) – cot (λt) y(t) dt = f(x).
                      a
                                                                2
                     This is a special case of equation 1.9.2 with g(x) = cot (λx).
                                              3
                                        d    sin (λx)f (x)

                                                   x
                        Solution: y(x)= –               .
                                        dx   2λ cos(λx)
                       x

                             2           2
               86.       A cot (λx)+ B cot (λt) y(t) dt = f(x).
                      a
                                                                                         2
                     For B = –A, see equation 1.5.85. This is a special case of equation 1.9.4 with g(x) = cot (λx).
                                         1   d           2A     x       2B

                        Solution: y(x)=           tan(λx)   A+B    tan(λt)   A+B  f (t) dt .
                                                                           t
                                       A + B dx
                                                             a
                       x

                             2           2
               87.       A cot (λx)+ B cot (µt)+ C y(t) dt = f(x).
                      a
                                                                  2
                                                                                    2
                     This is a special case of equation 1.9.6 with g(x)= A cot (λx) and h(t)= B cot (µt)+ C.
                       x

                                         n
               88.       cot(λx) – cot(λt)  y(t) dt = f(x),  n =1, 2, ...
                      a

                     The right-hand side of the equation is assumed to satisfy the conditions f(a)= f (a)= ··· =
                                                                                     x
                     f x (n) (a)=0.
                                          (–1) n     2     d    n+1
                        Solution: y(x)=            sin (λx)     f(x).
                                        n
                                             2
                                       λ n! sin (λx)      dx
                       x

                           µ
                                  µ
               89.      (cot x – cot t)y(t) dt = f(x).
                      a
                                                                µ
                     This is a special case of equation 1.9.2 with g(x) = cot x.
                                        1 d     sin µ+1  xf (x)

                                                     x
                        Solution: y(x)= –                 .
                                        µ dx   cos µ–1  x
                 © 1998 by CRC Press LLC
                © 1998 by CRC Press LLC
                                                                                                             Page 55
   72   73   74   75   76   77   78   79   80   81   82