Page 72 - Handbook Of Integral Equations
P. 72

x

                             2           2
               45.       A sin (λx)+ B sin (λt) y(t) dt = f(x).
                      a
                                                                                         2
                     For B = –A, see equation 1.5.44. This is a special case of equation 1.9.4 with g(x) = sin (λx).
                        Solution:
                                                         2A     x       2B
                                        1   d           –               –

                                y(x)=             sin(λx)   A+B    sin(λt)   A+B  f (t) dt .
                                                                            t
                                      A + B dx
                                                             a
                       x

                             2           2
               46.       A sin (λx)+ B sin (µt)+ C y(t) dt = f(x).
                      a
                                                                  2
                                                                                    2
                     This is a special case of equation 1.9.6 with g(x)= A sin (λx) and h(t)= B sin (µt)+ C.
                       x


               47.      sin[λ(x – t)] sin[λ(x + t)]y(t) dt = f(x),  f(a)= f (a)=0.
                                                                      x
                      a
                     Using the trigonometric formula

                               sin(α – β) sin(α + β)=  1    cos(2β) – cos(2α) ,  α = λx,  β = λt,
                                                  2
                     we reduce the original equation to an equation of the form 1.5.5 with A = B =1:
                                           x

                                            cos(2λx) – cos(2λt) y(t) dt = –2f(x).
                                         a
                                       1 d     f (x)

                                               x
                        Solution: y(x)=              .
                                       λ dx sin(2λx)
                         x

               48.       sin(λx) sin(µt) + sin(βx) sin(γt) y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.15 with g 1 (x) = sin(λx), h 1 (t) = sin(µt), g 2 (x) = sin(βx),
                     and h 2 (t) = sin(γt).
                       x

                           3
               49.      sin [λ(x – t)]y(t) dt = f(x).
                      a
                     It is assumed that f(a)= f (a)= f (a)= f       (a)=0.


                                          x     xx      xxx
                                                      3
                                              1
                                         3
                        Using the formula sin β = – sin 3β + sin β, we arrive at an equation of the form 1.5.41:
                                              4       4
                                     x

                                         1              3
                                        – sin[3λ(x – t)] +  sin[λ(x – t)] y(t) dt = f(x).
                                         4              4
                                     a
                         x
                           3        3
               50.       sin (λx) – sin (λt) y(t) dt = f(x),  f(a)= f (a)=0.

                                                                  x
                      a
                                                                3
                     This is a special case of equation 1.9.2 with g(x) = sin (λx).
                         x
                             3           3
               51.       A sin (λx)+ B sin (λt) y(t) dt = f(x).
                      a
                                                                3
                     This is a special case of equation 1.9.4 with g(x) = sin (λx).
                        Solution:
                                    sign sin(λx) d         –  3A     x      –  3B
                              y(x)=                 sin(λx)   A+B    sin(λt)   A+B  f (t) dt .

                                                                              t
                                      A + B   dx                a
                 © 1998 by CRC Press LLC

                © 1998 by CRC Press LLC
                                                                                                             Page 50
   67   68   69   70   71   72   73   74   75   76   77