Page 67 - Handbook Of Integral Equations
P. 67

x

                           3
               15.      cos [λ(x – t)]y(t) dt = f(x).
                      a
                                      3
                     Using the formula cos β =  1  cos 3β +  3  cos β, we arrive at an equation of the form 1.5.8:
                                           4        4
                                       x
                                        1              3

                                        4  cos[3λ(x – t)] +  4  cos[λ(x – t)] y(t) dt = f(x).
                                     a
                       x

                           3         3

               16.       cos (λx) – cos (λt) y(t) dt = f(x),  f(a)= f (a)=0.
                                                                  x
                      a
                                     1 d        f (x)

                                                 x
                     Solution: y(x)= –                    .
                                                    2
                                    3λ dx sin(λx) cos (λx)
                       x

                             3           3
               17.       A cos (λx)+ B cos (λt) y(t) dt = f(x).
                      a
                                                                                         3
                     For B = –A, see equation 1.3.16. This is a special case of equation 1.9.4 with g(x) = cos (λx).
                        Solution:
                                       1    d           –  3A     x       –  3B

                               y(x)=            cos(λx)  A+B    cos(λt)  A+B  f (t) dt .
                                                                             t
                                     A + B dx                a
                       x

                           2                       2
               18.       cos (λx) cos(µt) + cos(βx) cos (γt) y(t) dt = f(x).
                      a
                                                                2
                     This is a special case of equation 1.9.15 with g 1 (x)=cos (λx), h 1 (t)=cos(µt), g 2 (x)=cos(βx),
                                 2
                     and h 2 (t) = cos (γt).
                       x

                           4
               19.      cos [λ(x – t)]y(t) dt = f(x).
                      a
                                                                                          4
                     Let us transform the kernel of the integral equation using the trigonometric formula cos β =
                     1        1        3
                                       8
                     8  cos 4β +  2  cos 2β + , where β = λ(x – t), and differentiate the resulting equation with
                     respect to x. Then we arrive at an equation of the form 2.5.18:
                                         x

                                             1
                                y(x) – λ     sin[4λ(x – t)] + sin[2λ(x – t)] y(t) dt = f (x).

                                            2                                  x
                                        a
                         x
                                         n
               20.       cos(λx) – cos(λt)  y(t) dt = f(x),  n =1, 2, ...
                      a

                     The right-hand side of the equation is assumed to satisfy the conditions f(a)= f (a)= ··· =
                                                                                     x
                     f x (n) (a)=0.
                                       (–1) n        1    d    n+1
                        Solution: y(x)=     sin(λx)             f(x).
                                        n
                                       λ n!        sin(λx) dx
                         x  √
               21.        cos t – cos xy(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.38 with g(x)=1 – cos x.
                        Solution:                              x
                                            2     	  1   d  
 2     sin tf(t) dt
                                      y(x)=   sin x              √          .
                                            π       sin x dx      cos t – cos x
                                                              a
                 © 1998 by CRC Press LLC



                © 1998 by CRC Press LLC
                                                                                                             Page 45
   62   63   64   65   66   67   68   69   70   71   72