Page 71 - Handbook Of Integral Equations
P. 71

2 . Solution for ∆ <0:
                      ◦
                                                                   x

                               (A 1 λ 1 + A 2 λ 2 )y(x)= f (x)+ Bf(x)+ C  sin[k(x – t)]f(t) dt,

                                                 xx
                                                                  a
                                √                            1
                                                                            2
                                                2
                                                                        2
                                                                   2
                                                                                  2 2
                                                    2
                             k =  –∆,  B = ∆ + λ + λ ,  C = √    ∆ +(λ + λ )∆ + λ λ .
                                                                            2
                                                                        1
                                                1
                                                    2
                                                                                  1 2
                                                             –∆
                      ◦
                     3 . Solution for ∆ =0:
                                                                          x

                                                        2
                                                                    2 2
                                                            2

                             (A 1 λ 1 + A 2 λ 2 )y(x)= f (x)+(λ + λ )f(x)+ λ λ  (x – t)f(t) dt.
                                                xx      1   2       1 2
                                                                         a
                     4 . Solution for ∆ = ∞:
                      ◦
                                                   2
                                                       2
                                                               2 2
                                           f xxxx  +(λ + λ )f xx  + λ λ f


                                                       2
                                                               1 2
                                                   1
                                    y(x)= –          3     3       ,    f = f(x).
                                                 A 1 λ + A 2 λ
                                                     1     2
                        In the last case, the relation A 1 λ 1 + A 2 λ 2 = 0 holds and the right-hand side of the integral
                     equation is assumed to satisfy the conditions f(a)= f (a)= f (a)= f       (a)=0.


                                                               x      xx      xxx
                        Remark. The solution can be obtained from the solution of equation 1.3.41 in which the
                                                          2
                     change of variables λ k → iλ k , A k → –iA k , i = –1(k = 1, 2), should be made.
                         x

               42.       A sin[λ(x – t)] + B sin[µ(x – t)] + C sin[β(x – t)] y(t) dt = f(x).
                      a
                     It is assumed that f(a)= f (a) = 0. Differentiating the integral equation twice yields

                                          x
                                          x

                                              2               2
                     (Aλ + Bµ + Cβ)y(x) –   Aλ sin[λ(x – t)] + Bµ sin[µ(x – t)] y(t) dt
                                         a
                                                                      x


                                                              – Cβ 2   sin[β(x – t)]y(t) dt = f (x).
                                                                                         xx
                                                                     a
                     Eliminating the last integral with the aid of the original equation, we arrive at an equation of
                     the form 2.5.18:
                                           x
                                               2   2
                     (Aλ + Bµ + Cβ)y(x)+    A(β – λ ) sin[λ(x – t)]
                                         a
                                                                                         2
                                                            2

                                                         2

                                                    + B(β – µ ) sin[µ(x – t)] y(t) dt = f (x)+ β f(x).
                                                                                  xx
                     In the special case Aλ + Bµ + Cβ = 0, this is an equation of the form 1.5.41.
                       x

                           2

               43.      sin [λ(x – t)]y(t) dt = f(x),  f(a)= f (a)= f      (a)=0.
                                                            x      xx
                      a
                     Differentiation yields an equation of the form 1.5.34:
                                             x
                                                                 1

                                               sin[2λ(x – t)]y(t) dt =  f (x).
                                                                    x
                                            a                    λ
                                       1
                                         –2
                        Solution: y(x)= λ f   (x)+2f (x).

                                       2   xxx      x
                       x

                           2        2

               44.       sin (λx) – sin (λt) y(t) dt = f(x),  f(a)= f (a)=0.
                                                                  x
                      a
                                   1 d     f (x)

                                           x
                     Solution: y(x)=             .
                                   λ dx sin(2λx)
                 © 1998 by CRC Press LLC
                © 1998 by CRC Press LLC
                                                                                                             Page 49
   66   67   68   69   70   71   72   73   74   75   76