Page 66 - Handbook Of Integral Equations
P. 66

x

                           2
               9.       cos [λ(x – t)]y(t) dt = f(x).
                      a
                     Differentiating yields an equation of the form 2.5.16:
                                                  x

                                         y(x) – λ  sin[2λ(x – t)]y(t) dt = f (x).

                                                                      x
                                                 a
                        Solution:
                                           2λ 2     x                             √


                              y(x)= f (x)+        sin[k(x – t)]f (t) dt,  where  k = λ 2.
                                     x                       t
                                            k  a
                       x

                           2         2

               10.       cos (λx) – cos (λt) y(t) dt = f(x),  f(a)= f (a)=0.
                                                                  x
                      a
                                    1 d     f (x)

                                            x
                     Solution: y(x)= –            .
                                    λ dx sin(2λx)
                       x

                             2           2
               11.       A cos (λx)+ B cos (λt) y(t) dt = f(x).
                      a
                                                                                         2
                     For B = –A, see equation 1.5.10. This is a special case of equation 1.9.4 with g(x) = cos (λx).
                        Solution:
                                                         2A     x        2B
                                       1    d           –               –

                               y(x)=            cos(λx)  A+B    cos(λt)  A+B  f (t) dt .
                                                                             t
                                     A + B dx                a
                         x
                             2           2
               12.       A cos (λx)+ B cos (µt)+ C y(t) dt = f(x).
                      a
                                                                  2
                                                                                    2
                     This is a special case of equation 1.9.6 with g(x)= A cos (λx) and h(t)= B cos (µt)+ C.
                       x

               13.      cos[λ(x – t)] cos[λ(x + t)]y(t) dt = f(x).
                      a
                     Using the trigonometric formula

                              cos(α – β) cos(α + β)=  1    cos(2α) + cos(2β) ,  α = λx,  β = λt,
                                                  2
                     we reduce the original equation to an equation of the form 1.5.6 with A = B =1:
                                           x


                                             cos(2λx) + cos(2λt) y(t) dt =2f(x).
                                          a
                        Solution with cos(2λx)>0:
                                               d       1       x  f (t) dt

                                                                  t
                                         y(x)=     √            √         .
                                               dx   cos(2λx)  a   cos(2λt)
                         x

               14.       A cos(λx) cos(µt)+ B cos(βx) cos(γt) y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.15 with g 1 (x)= A cos(λx), h 1 (t) = cos(µt), g 2 (x)=
                     B cos(βx), and h 2 (t) = cos(γt).

                 © 1998 by CRC Press LLC









                © 1998 by CRC Press LLC
                                                                                                             Page 44
   61   62   63   64   65   66   67   68   69   70   71