Page 68 - Handbook Of Integral Equations
P. 68

x
                            y(t) dt
               22.       √            = f(x).
                      a   cos t – cos x
                     Solution:                           x
                                                  1 d       sin tf(t) dt
                                            y(x)=          √          .
                                                  π dx  a   cos t – cos x
                       x

                                   λ
               23.      (cos t – cos x) y(t) dt = f(x),  0 < λ <1.
                      a
                     Solution:
                                                       x

                                             1  d         sin tf(t) dt       sin(πλ)
                                          	       
 2
                               y(x)= k sin x                         ,    k =       .
                                           sin x dx     (cos t – cos x) λ      πλ
                                                      a
                       x

                                   µ
                           µ
               24.      (cos x – cos t)y(t) dt = f(x).
                      a
                                                                µ
                     This is a special case of equation 1.9.2 with g(x) = cos x.
                                        1 d     f (x)

                                                 x
                        Solution: y(x)= –                .
                                        µ dx sin x cos µ–1  x
                       x

                             µ         µ
               25.       A cos x + B cos t y(t) dt = f(x).
                      a
                                                                                           µ
                     For B = –A, see equation 1.5.24. This is a special case of equation 1.9.4 with g(x) = cos x.
                        Solution:
                                          1   d         –  Aµ     x       –  Bµ

                                  y(x)=             cos x   A+B    cos t   A+B  f (t) dt .
                                                                          t
                                        A + B dx             a
                       x
                            y(t) dt

               26.                    = f(x),    0 < λ <1.
                      a (cos t – cos x) λ
                     Solution:                             x
                                               sin(πλ) d      sin tf(t) dt
                                         y(x)=                            .
                                                 π   dx  a  (cos t – cos x) 1–λ
                         x

               27.      (x – t) cos[λ(x – t)]y(t) dt = f(x),  f(a)= f (a)=0.
                                                                 x
                      a
                     Differentiating the equation twice yields
                                    x                      x

                          y(x) – 2λ   sin[λ(x – t)]y(t) dt – λ 2  (x – t) cos[λ(x – t)]y(t) dt = f (x).

                                                                                    xx
                                   a                      a
                     Eliminating the third term on the left-hand side with the aid of the original equation, we arrive
                     at an equation of the form 2.5.16:
                                              x

                                                                          2

                                    y(x) – 2λ   sin[λ(x – t)]y(t) dt = f (x)+ λ f(x).
                                                                  xx
                                             a
                             √
                         cos λ x – t
                         x
               28.          √         y(t) dt = f(x).
                      a       x – t
                     Solution:                               √
                                                      x
                                               1 d     cosh λ x – t

                                         y(x)=             √        f(t) dt.
                                               π dx          x – t
                                                     a
                 © 1998 by CRC Press LLC
                © 1998 by CRC Press LLC
                                                                                                             Page 46
   63   64   65   66   67   68   69   70   71   72   73