Page 69 - Handbook Of Integral Equations
P. 69

√
                       x
                                 2
                         cos λ x – t 2
               29.          √          y(t) dt = f(x).
                               2
                      0       x – t 2
                     Solution:                               √
                                                                2
                                              2 d     x  cosh λ x – t 2
                                        y(x)=         t    √          f(t) dt.
                                              π dx  0       x – t 2
                                                             2
                              √
                       ∞  cos λ t – x
                                 2   2
               30.          √           y(t) dt = f(x).
                               2
                      x       t – x 2
                     Solution:
                                                              √
                                                                2
                                              2 d     ∞  cosh λ t – x 2
                                       y(x)= –         t    √         f(t) dt.
                                              π dx            2   2
                                                    x        t – x
                       x

                            β       γ
               31.       Ax + B cos (λt)+ C]y(t) dt = f(x).
                      a
                                                                               γ
                                                                β
                     This is a special case of equation 1.9.6 with g(x)= Ax and h(t)= B cos (λt)+ C.
                       x

                             γ         β
               32.       A cos (λx)+ Bt + C]y(t) dt = f(x).
                      a
                                                                                  β
                                                                  γ
                     This is a special case of equation 1.9.6 with g(x)= A cos (λx) and h(t)= Bt + C.
                         x
                            λ   µ      β   γ
               33.       Ax cos t + Bt cos x y(t) dt = f(x).
                      a
                                                                  λ
                                                                             µ
                                                                                           γ
                     This is a special case of equation 1.9.15 with g 1 (x)= Ax , h 1 (t) = cos t, g 2 (x)= B cos x,
                               β
                     and h 2 (t)= t .
                 1.5-2. Kernels Containing Sine
                         x
               34.      sin[λ(x – t)]y(t) dt = f(x),  f(a)= f (a)=0.

                                                           x
                      a
                                   1

                     Solution: y(x)=  f (x)+ λf(x).
                                      xx
                                   λ
                       x


               35.       sin[λ(x – t)] + b y(t) dt = f(x).
                      a
                     Differentiating the equation with respect to x yields an equation of the form 2.5.3:
                                                  x

                                              λ                      1

                                        y(x)+      cos[λ(x – t)]y(t) dt =  f (x).
                                                                       x
                                              b                      b
                                                 a
                       x

               36.      sin(λx + βt)y(t) dt = f(x).
                      a
                     For β = –λ, see equation 1.5.34. Assume that β ≠ –λ.
                        Differentiating the equation with respect to x twice yields
                                            x


                         sin[(λ + β)x]y(x)+ λ  cos(λx + βt)y(t) dt = f (x),                 (1)
                                                                x
                                           a
                                                                   x
                                                               2
                          sin[(λ + β)x]y(x)  + λ cos[(λ + β)x]y(x) – λ  sin(λx + βt)y(t) dt = f (x). (2)
                                                                                      xx
                                         x
                                                                 a
                 © 1998 by CRC Press LLC
                © 1998 by CRC Press LLC
                                                                                                             Page 47
   64   65   66   67   68   69   70   71   72   73   74