Page 74 - Handbook Of Integral Equations
P. 74

x

                                   λ
               58.      (sin x – sin t) y(t) dt = f(x),  0 < λ <1.
                      a
                     Solution:
                                             1   d        cos tf(t) dt       sin(πλ)
                                          	        
 2     x
                               y(x)= k cos x                         ,    k =       .
                                            cos x dx  a  (sin x – sin t) λ     πλ
                       x

                           µ
                                  µ
               59.      (sin x – sin t)y(t) dt = f(x).
                      a
                                                                µ
                     This is a special case of equation 1.9.2 with g(x) = sin x.

                                       1 d      f (x)
                                                x
                        Solution: y(x)=                 .
                                       µ dx cos x sin µ–1  x
                       x

                                  µ            µ
               60.       A| sin(λx)| + B| sin(λt)|  y(t) dt = f(x).
                      a
                                                                     µ
                     This is a special case of equation 1.9.4 with g(x)= | sin(λx)| .
                        Solution:
                                        1   d           –  Aµ     x       –  Bµ

                                y(x)=             sin(λx)   A+B    sin(λt)   A+B  f (t) dt .
                                                                            t
                                      A + B dx               a
                         x    y(t) dt
               61.                        = f(x),    0 < µ <1.
                      a [sin(λx) – sin(λt)] µ
                     This is a special case of equation 1.9.42 with g(x) = sin(λx) and h(x) ≡ 1.
                        Solution:
                                            λ sin(πµ) d     x  cos(λt)f(t) dt
                                      y(x)=                                 .
                                               π    dx  a  [sin(λx) – sin(λt)] 1–µ
                       x


               62.      (x – t) sin[λ(x – t)]y(t) dt = f(x),  f(a)= f (a)= f      (a)=0.
                                                                 x      xx
                      a
                     Double differentiation yields
                                 x                      x

                             2λ    cos[λ(x – t)]y(t) dt – λ 2  (x – t) sin[λ(x – t)]y(t) dt = f (x).

                                                                                 xx
                                 a                     a
                     Eliminating the second integral on the left-hand side of this equation with the aid of the
                     original equation, we arrive at an equation of the form 1.5.1:
                                         x
                                                            1          2
                                         cos[λ(x – t)]y(t) dt =  f (x)+ λ f(x) .

                                                                xx
                                       a                   2λ
                        Solution:
                                             1                 1  3     x
                                       y(x)=   f xxx (x)+ λf (x)+  λ  f(t) dt.


                                                          x
                                             2λ                2    a
                       x

                            β       γ
               63.       Ax + B sin (λt)+ C]y(t) dt = f(x).
                      a
                                                                               γ
                                                                β
                     This is a special case of equation 1.9.6 with g(x)= Ax and h(t)= B sin (λt)+ C.
                 © 1998 by CRC Press LLC








                © 1998 by CRC Press LLC
                                                                                                             Page 52
   69   70   71   72   73   74   75   76   77   78   79