Page 75 - Handbook Of Integral Equations
P. 75

x

                             γ         β
               64.       A sin (λx)+ Bt + C]y(t) dt = f(x).
                      a
                                                                                  β
                                                                  γ
                     This is a special case of equation 1.9.6 with g(x)= A sin (λx) and h(t)= Bt + C.
                         x
                            λ   µ      β   γ
               65.       Ax sin t + Bt sin x y(t) dt = f(x).
                      a
                                                                                           γ
                                                                             µ
                                                                   λ
                     This is a special case of equation 1.9.15 with g 1 (x)= Ax , h 1 (t) = sin t, g 2 (x)= B sin x,
                               β
                     and h 2 (t)= t .
                 1.5-3. Kernels Containing Tangent
                       x


               66.       tan(λx) – tan(λt) y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.2 with g(x) = tan(λx).
                                       1 d    2
                        Solution: y(x)=     cos (λx)f (x) .
                                                    x
                                       λ dx
                         x

               67.       A tan(λx)+ B tan(λt) y(t) dt = f(x).
                      a
                     For B = –A, see equation 1.5.66. This is a special case of equation 1.9.4 with g(x) = tan(λx).
                                                          A     x        B
                                         1   d           –               –

                        Solution: y(x)=          tan(λx)  A+B    tan(λt)  A+B  f (t) dt .
                                                                             t
                                       A + B dx
                                                              a
                       x


               68.       A tan(λx)+ B tan(µt)+ C y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.6 with g(x)= A tan(λx) and h(t)= B tan(µt)+ C.
                       x

                           2         2
               69.       tan (λx) – tan (λt) y(t) dt = f(x).
                      a
                                                                2
                     This is a special case of equation 1.9.2 with g(x) = tan (λx).
                                             3
                                       d    cos (λx)f (x)

                                                   x
                        Solution: y(x)=                .
                                       dx   2λ sin(λx)
                         x
                              2          2
               70.       A tan (λx)+ B tan (λt) y(t) dt = f(x).
                      a
                                                                                         2
                     For B = –A, see equation 1.5.69. This is a special case of equation 1.9.4 with g(x) = tan (λx).
                                                         2A     x       2B
                                         1   d           –              –

                        Solution: y(x)=           tan(λx)   A+B    tan(λt)   A+B  f (t) dt .
                                                                            t
                                       A + B dx
                                                              a
                       x

                              2          2
               71.       A tan (λx)+ B tan (µt)+ C y(t) dt = f(x).
                      a
                                                                  2
                                                                                    2
                     This is a special case of equation 1.9.6 with g(x)= A tan (λx) and h(t)= B tan (µt)+ C.
                         x
                                          n
               72.       tan(λx) – tan(λt)  y(t) dt = f(x),  n =1, 2, ...
                      a
                     The right-hand side of the equation is assumed to satisfy the conditions f(a)= f (a)= ··· =

                                                                                     x
                     f  (n) (a)=0.
                      x
                                                               n+1
                                            1         2    d
                        Solution: y(x)=            cos (λx)      f(x).
                                              2
                                        n
                                       λ n! cos (λx)       dx
                 © 1998 by CRC Press LLC
                © 1998 by CRC Press LLC
                                                                                                             Page 53
   70   71   72   73   74   75   76   77   78   79   80