Page 76 - Handbook Of Integral Equations
P. 76

x

                        √
               73.        tan x – tan ty(t) dt = f(x).
                      a
                     Solution:                                 x
                                            2   	   2  d  
 2       f(t) dt
                                   y(x)=         cos x              √          .
                                              2
                                         π cos x       dx    a cos t tan x – tan t
                                                                  2
                       x
                            y(t) dt

               74.       √            = f(x).
                      a   tan x – tan t
                     Solution:                         x
                                                1 d           f(t) dt
                                          y(x)=              √          .
                                                π dx  a cos t tan x – tan t
                                                           2
                       x

                                    λ
               75.      (tan x – tan t) y(t) dt = f(x),  0 < λ <1.
                      a
                     Solution:
                                         sin(πλ)  	  2  d  
 2     x  f(t) dt
                                  y(x)=           cos x                         .
                                         πλ cos x      dx      cos t(tan x – tan t) λ
                                                                  2
                                              2
                                                             a
                         x
                                   µ
                           µ
               76.      (tan x – tan t)y(t) dt = f(x).
                      a
                                                                µ
                     This is a special case of equation 1.9.2 with g(x) = tan x.
                                               µ+1
                                       1 d  cos   xf (x)

                                                    x
                        Solution: y(x)=                  .
                                       µ dx    sin µ–1  x
                       x

                              µ         µ
               77.       A tan x + B tan t y(t) dt = f(x).
                      a
                                                                                           µ
                     For B = –A, see equation 1.5.76. This is a special case of equation 1.9.4 with g(x) = tan x.
                        Solution:
                                        1   d           –  Aµ     x       –  Bµ

                               y(x)=            tan(λx)  A+B    tan(λt)  A+B  f (t) dt .
                                                                             t
                                     A + B dx                a
                         x    y(t) dt
               78.                         = f(x),    0 < µ <1.
                      a [tan(λx) – tan(λt)] µ
                     This is a special case of equation 1.9.42 with g(x) = tan(λx) and h(x) ≡ 1.
                        Solution:
                                         λ sin(πµ) d     x       f(t) dt
                                   y(x)=                                        .
                                                          2
                                            π    dx  a  cos (λt)[tan(λx) – tan(λt)] 1–µ
                         x
                            β       γ
               79.       Ax + B tan (λt)+ C]y(t) dt = f(x).
                      a
                                                                               γ
                                                                β
                     This is a special case of equation 1.9.6 with g(x)= Ax and h(t)= B tan (λt)+ C.
                       x

                              γ        β
               80.       A tan (λx)+ Bt + C]y(t) dt = f(x).
                      a
                                                                                  β
                                                                  γ
                     This is a special case of equation 1.9.6 with g(x)= A tan (λx) and h(t)= Bt + C.
                         x
                            λ   µ      β    γ
               81.       Ax tan t + Bt tan x y(t) dt = f(x).
                      a
                                                                             µ
                                                                                           γ
                                                                  λ
                     This is a special case of equation 1.9.15 with g 1 (x)= Ax , h 1 (t) = tan t, g 2 (x)= B tan x,
                               β
                     and h 2 (t)= t .
                 © 1998 by CRC Press LLC
                © 1998 by CRC Press LLC
                                                                                                             Page 54
   71   72   73   74   75   76   77   78   79   80   81