Page 79 - Handbook Of Integral Equations
P. 79
x
98. sin[λ(x – t)] cos[λ(x + t)]y(t) dt = f(x), f(a)= f (a)=0.
x
a
Using the trigonometric formula
sin(α – β) cos(α + β)= 1 sin(2α) – sin(2β) , α = λx, β = λt,
2
we reduce the original equation to an equation of the form 1.5.37:
x
sin(2λx) – sin(2λt) y(t) dt =2f(x).
a
1 d f (x)
x
Solution: y(x)= .
λ dx cos(2λx)
x
99. cos[λ(x – t)] sin[λ(x + t)]y(t) dt = f(x).
a
Using the trigonometric formula
cos(α – β) sin(α + β)= 1 sin(2α) + sin(2β) , α = λx, β = λt,
2
we reduce the original equation to an equation of the form 1.5.38 with A = B =1:
x
sin(2λx) + sin(2λt) y(t) dt =2f(x).
a
Solution with sin(2λx)>0:
d 1 x f (t) dt
t
y(x)= √ √ .
dx sin(2λx) a sin(2λt)
x
100. A cos(λx) sin(µt)+ B cos(βx) sin(γt) y(t) dt = f(x).
a
This is a special case of equation 1.9.15 with g 1 (x)= A cos(λx), h 1 (t) = sin(µt), g 2 (x)=
B cos(βx), and h 2 (t) = sin(γt).
x
101. A sin(λx) cos(µt)+ B sin(βx) cos(γt) y(t) dt = f(x).
a
This is a special case of equation 1.9.15 with g 1 (x)= A sin(λx), h 1 (t) = cos(µt), g 2 (x)=
B sin(βx), and h 2 (t) = cos(γt).
x
102. A cos(λx) cos(µt)+ B sin(βx) sin(γt) y(t) dt = f(x).
a
This is a special case of equation 1.9.15 with g 1 (x)= A cos(λx), h 1 (t) = cos(µt), g 2 (x)=
B sin(βx), and h 2 (t) = sin(γt).
x
β γ
103. A cos (λx)+ B sin (µt) y(t) dt = f(x).
a
γ
β
This is a special case of equation 1.9.6 with g(x)= A cos (λx) and h(t)= B sin (µt).
© 1998 by CRC Press LLC
© 1998 by CRC Press LLC
Page 57