Page 83 - Handbook Of Integral Equations
P. 83

1.6-2. Kernels Containing Arcsine

                         x

               11.       arcsin(λx) – arcsin(λt) y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.2 with g(x) = arcsin(λx).
                                       1 d    √
                                                  2 2
                        Solution: y(x)=       1 – λ x f (x) .

                                                      x
                                       λ dx
                         x

               12.       A arcsin(λx)+ B arcsin(λt) y(t) dt = f(x).
                      a
                     For B =–A, see equation 1.6.11. This is a special case of equation 1.9.4 with g(x)=arcsin(λx).
                        Solution:
                                    sign x d            –  A     x        –  B

                             y(x)=             arcsin(λx)   A+B    arcsin(λt)   A+B  f (t) dt .
                                                                               t
                                   A + B dx                  a
                       x


               13.       A arcsin(λx)+ B arcsin(µt)+ C y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.6 with g(x)= A arcsin(λx) and h(t)= B arcsin(µt)+ C.
                         x
                                              n
               14.       arcsin(λx) – arcsin(λt)  y(t) dt = f(x),  n =1, 2, ...
                      a

                     The right-hand side of the equation is assumed to satisfy the conditions f(a)= f (a)= ··· =
                                                                                     x
                     f x (n) (a)=0.
                        Solution:
                                                                        n+1
                                                 1        √         d
                                     y(x)=      √           1 – λ x       f(x).
                                                                2 2
                                                     2 2
                                            n
                                           λ n!  1 – λ x           dx
                         x
               15.        arcsin(λx) – arcsin(λt) y(t) dt = f(x).
                      a
                     Solution:
                                              2  x

                              2        1  d             ϕ(t)f(t) dt                  1

                        y(x)=   ϕ(x)              √                   ,    ϕ(x)= √        .
                              π      ϕ(x) dx    a   arcsin(λx) – arcsin(λt)        1 – λ x
                                                                                       2 2
                       x
                                 y(t) dt
               16.       √                     = f(x).
                      a   arcsin(λx) – arcsin(λt)
                     Solution:
                                    λ d     x     ϕ(t)f(t) dt                   1
                              y(x)=         √                    ,   ϕ(x)= √         .
                                    π dx  a   arcsin(λx) – arcsin(λt)        1 – λ x
                                                                                 2 2
                       x

                                             µ

               17.       arcsin(λx) – arcsin(λt)  y(t) dt = f(x),  0 < µ <1.
                      a
                     Solution:
                                                       2  x
                                                1   d            ϕ(t)f(t) dt

                                  y(x)= kϕ(x)                                   ,
                                              ϕ(x) dx      [arcsin(λx) – arcsin(λt)] µ
                                                         a
                                                     1           sin(πµ)
                                           ϕ(x)= √        ,  k =       .
                                                       2 2
                                                   1 – λ x         πµ
                 © 1998 by CRC Press LLC






                © 1998 by CRC Press LLC
                                                                                                             Page 61
   78   79   80   81   82   83   84   85   86   87   88