Page 87 - Handbook Of Integral Equations
P. 87

x

                              µ           µ
               39.       arccot (λx) – arccot (λt) y(t) dt = f(x).
                      a
                                                                  µ
                     This is a special case of equation 1.9.2 with g(x) = arccot (λx).
                                                   2 2
                                        1 d     (1 + λ x )f (x)

                                                        x
                        Solution: y(x)= –           µ–1      .
                                        λµ dx  arccot  (λx)
                       x
                                 y(t) dt
               40.                             µ  = f(x),  0 < µ <1.
                      a  arccot(λt) – arccot(λx)
                     Solution:
                                λ sin(πµ) d     x     ϕ(t)f(t) dt                   1
                          y(x)=                                       ,    ϕ(x)=        .
                                                                                     2 2
                                    π    dx  a  [arccot(λt) – arccot(λx)] 1–µ    1+ λ x
                       x

                                β              γ
               41.       A arccot (λx)+ B arccot (µt)+ C y(t) dt = f(x).
                      a
                                                                                       γ
                                                                   β
                     This is a special case of equation 1.9.6 with g(x)= A arccot (λx) and h(t)= B arccot (µt)+C.
               1.7. Equations Whose Kernels Contain Combinations of
                      Elementary Functions
                 1.7-1. Kernels Containing Exponential and Hyperbolic Functions

                       x


               1.       e µ(x–t)   A 1 cosh[λ 1 (x – t)] + A 2 cosh[λ 2 (x – t)] y(t) dt = f(x).
                      a
                     The substitution w(x)= e –µx y(x) leads to an equation of the form 1.3.8:
                                  x
                                                                             –µx
                                    A 1 cosh[λ 1 (x – t)] + A 2 cosh[λ 2 (x – t)] w(t) dt = e  f(x).
                                a
                         x
                                  2
               2.       e µ(x–t)  cosh [λ(x – t)]y(t) dt = f(x).
                      a
                     Solution:
                                 2λ 2     x  µ(x–t)                    √

                     y(x)= ϕ(x) –       e    sinh[k(x – t)]ϕ(x) dt,  k = λ 2,  ϕ(x)= f (x) – µf(x).
                                                                                   x
                                 k   a
                       x

                                  3
               3.       e µ(x–t)  cosh [λ(x – t)]y(t) dt = f(x).
                      a
                     The substitution w(x)= e –µx y(x) leads to an equation of the form 1.3.15:
                                             x
                                                 3
                                             cosh [λ(x – t)]w(t) dt = e –µx f(x).
                                           a
                         x
                                  4
               4.       e µ(x–t)  cosh [λ(x – t)]y(t) dt = f(x).
                      a
                     The substitution w(x)= e –µx y(x) leads to an equation of the form 1.3.19:
                                             x
                                                 4
                                             cosh [λ(x – t)]w(t) dt = e –µx f(x).
                                           a



                 © 1998 by CRC Press LLC









                © 1998 by CRC Press LLC
                                                                                                             Page 65
   82   83   84   85   86   87   88   89   90   91   92