Page 84 - Handbook Of Integral Equations
P. 84

x

                              µ           µ
               18.       arcsin (λx) – arcsin (λt) y(t) dt = f(x).
                      a
                                                                  µ
                     This is a special case of equation 1.9.2 with g(x) = arcsin (λx).
                                                  √
                                       1 d     f (x) 1 – λ x
                                                        2 2

                                               x
                        Solution: y(x)=                     .
                                       λµ dx   arcsin µ–1 (λx)
                       x
                                 y(t) dt
               19.                             µ  = f(x),  0 < µ <1.
                      a  arcsin(λx) – arcsin(λt)
                     Solution:
                                λ sin(πµ) d     x    ϕ(t)f(t) dt                    1
                          y(x)=                                      ,    ϕ(x)= √        .
                                   π    dx  a  [arcsin(λx) – arcsin(λt)] 1–µ      1 – λ x
                                                                                      2 2
                       x

                                β              γ
               20.       A arcsin (λx)+ B arcsin (µt)+ C y(t) dt = f(x).
                      a
                                                                                       γ
                                                                   β
                     This is a special case of equation 1.9.6 with g(x)= A arcsin (λx) and h(t)= B arcsin (µt)+C.
                 1.6-3. Kernels Containing Arctangent


                         x

               21.       arctan(λx) – arctan(λt) y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.2 with g(x) = arctan(λx).
                                       1 d       2 2

                        Solution: y(x)=     (1 + λ x ) f (x) .
                                                     x
                                       λ dx
                       x


               22.       A arctan(λx)+ B arctan(λt) y(t) dt = f(x).
                      a
                     For B =–A, see equation 1.6.21. This is a special case of equation 1.9.4 with g(x)=arctan(λx).
                        Solution:
                                    sign x d            –  A     x        –  B

                             y(x)=             arctan(λx)   A+B    arctan(λt)   A+B  f (t) dt .
                                                                               t
                                   A + B dx                  a
                       x


               23.       A arctan(λx)+ B arctan(µt)+ C y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.6 with g(x)= A arctan(λx) and h(t)= B arctan(µt)+ C.
                         x
                                               n
               24.       arctan(λx) – arctan(λt)  y(t) dt = f(x),  n =1, 2, ...
                      a
                     The right-hand side of the equation is assumed to satisfy the conditions f(a)= f (a)= ··· =

                                                                                     x
                     f  (n) (a)=0.
                      x
                        Solution:
                                                                       n+1

                                                 1             2 2  d
                                     y(x)=                (1 + λ x )     f(x).
                                             n
                                                     2 2
                                           λ n!(1 + λ x )          dx
                 © 1998 by CRC Press LLC








                © 1998 by CRC Press LLC
                                                                                                             Page 62
   79   80   81   82   83   84   85   86   87   88   89