Page 86 - Handbook Of Integral Equations
P. 86

1.6-4. Kernels Containing Arccotangent

                         x

               32.       arccot(λx) – arccot(λt) y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.2 with g(x) = arccot(λx).
                                        1 d       2 2
                        Solution: y(x)= –    (1 + λ x ) f (x) .

                                                      x
                                        λ dx
                         x

               33.       A arccot(λx)+ B arccot(λt) y(t) dt = f(x).
                      a
                     For B =–A, see equation 1.6.32. This is a special case of equation 1.9.4 with g(x)=arccot(λx).
                        Solution:
                                     1   d              –  A     x        –  B

                             y(x)=            arccot(λx)  A+B   arccot(λt)  A+B  f (t) dt .
                                                                               t
                                   A + B dx                  a
                       x


               34.       A arccot(λx)+ B arccot(µt)+ C y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.6 with g(x)= A arccot(λx) and h(t)= B arccot(µt)+ C.
                         x
                                               n
               35.       arccot(λx) – arccot(λt)  y(t) dt = f(x),  n =1, 2, ...
                      a

                     The right-hand side of the equation is assumed to satisfy the conditions f(a)= f (a)= ··· =
                                                                                     x
                     f x (n) (a)=0.
                        Solution:
                                                (–1) n         2 2  d    n+1
                                     y(x)=                (1 + λ x )     f(x).
                                           λ n!(1 + λ x )          dx
                                             n
                                                     2 2
                         x
               36.        arccot(λt) – arccot(λx) y(t) dt = f(x).
                      a
                     Solution:
                                              2  x

                               2       1   d             ϕ(t)f(t) dt                 1

                         y(x)=  ϕ(x)               √                   ,    ϕ(x)=         .
                                                                                       2 2
                               π      ϕ(x) dx   a    arccot(λt) – arccot(λx)      1+ λ x
                         x       y(t) dt
               37.       √                     = f(x).
                      a   arccot(λt) – arccot(λx)
                     Solution:
                                     λ d     x     ϕ(t)f(t) dt                  1
                               y(x)=         √                    ,   ϕ(x)=         .
                                     π dx  a   arccot(λt) – arccot(λx)       1+ λ x
                                                                                 2 2
                         x
                                               µ
               38.       arccot(λt) – arccot(λx)  y(t) dt = f(x),  0 < µ <1.
                      a
                     Solution:
                                                       2
                                                1  d             ϕ(t)f(t) dt
                                                          x
                                  y(x)= kϕ(x)                                   ,
                                              ϕ(x) dx    a  [arccot(λt) – arccot(λx)] µ
                                                     1          sin(πµ)
                                            ϕ(x)=         ,  k =      .
                                                      2 2
                                                  1+ λ x          πµ

                 © 1998 by CRC Press LLC









                © 1998 by CRC Press LLC
                                                                                                             Page 64
   81   82   83   84   85   86   87   88   89   90   91