Page 81 - Handbook Of Integral Equations
P. 81

x


               113.      cot(λx) tan(µt) + cot(βx) tan(γt) y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.15 with g 1 (x) = cot(λx), h 1 (t) = tan(µt), g 2 (x) = cot(βx),
                     and h 2 (t) = tan(γt).
                         x

               114.      tan(λx) tan(µt) + cot(βx) cot(γt) y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.15 with g 1 (x) = tan(λx), h 1 (t) = tan(µt), g 2 (x) = cot(βx),
                     and h 2 (t) = cot(γt).

                       x

                              β           γ
               115.      A tan (λx)+ B cot (µt) y(t) dt = f(x).
                      a
                                                                                    γ
                                                                  β
                     This is a special case of equation 1.9.6 with g(x)= A tan (λx) and h(t)= B cot (µt).
                         x
                             β            γ
               116.      A cot (λx)+ B tan (µt) y(t) dt = f(x).
                      a
                                                                                    γ
                                                                  β
                     This is a special case of equation 1.9.6 with g(x)= A cot (λx) and h(t)= B tan (µt).
                       x

                            λ   µ      β   γ
               117.      Ax tan t + Bt cot x y(t) dt = f(x).
                      a
                                                                                           γ
                                                                             µ
                                                                  λ
                     This is a special case of equation 1.9.15 with g 1 (x)= Ax , h 1 (t) = tan t, g 2 (x)= B cot x,
                               β
                     and h 2 (t)= t .
                       x

                            λ   µ      β   γ
               118.      Ax cot t + Bt tan x y(t) dt = f(x).
                      a
                                                                             µ
                                                                                           γ
                                                                  λ
                     This is a special case of equation 1.9.15 with g 1 (x)= Ax , h 1 (t) = cot t, g 2 (x)= B tan x,
                               β
                     and h 2 (t)= t .
               1.6. Equations Whose Kernels Contain Inverse
                      Trigonometric Functions
                 1.6-1. Kernels Containing Arccosine
                       x


               1.        arccos(λx) – arccos(λt) y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.2 with g(x) = arccos(λx).
                                        1 d    √

                                                   2 2
                        Solution: y(x)= –      1 – λ x f (x) .
                                                       x
                                        λ dx
                         x

               2.        A arccos(λx)+ B arccos(λt) y(t) dt = f(x).
                      a
                     For B = –A, see equation 1.6.1. This is a special case of equation 1.9.4 with g(x) = arccos(λx).
                        Solution:
                                     1   d              –  A     x        –  B
                             y(x)=           arccos(λx)  A+B    arccos(λt)  A+B  f (t) dt .

                                                                               t
                                   A + B dx                  a

                 © 1998 by CRC Press LLC









                © 1998 by CRC Press LLC
                                                                                                             Page 59
   76   77   78   79   80   81   82   83   84   85   86