Page 63 - Handbook Of Integral Equations
P. 63

x

                           µ       µ
               14.       ln (λx) – ln (λt) y(t) dt = f(x).
                      a
                                                               µ
                     This is a special case of equation 1.9.2 with g(x)=ln (λx).
                                       1 d     1–µ

                        Solution: y(x)=     x ln  (λx)f (x) .
                                                      x
                                       µ dx
                       x

                            β           γ
               15.       A ln (λx)+ B ln (µt)+ C y(t) dt = f(x).
                      a
                                                                 β
                                                                                  γ
                     This is a special case of equation 1.9.6 with g(x)= A ln (λx) and h(t)= B ln (µt)+ C.
                       x

                               λ
               16.      [ln(x/t)] y(t) dt = f(x),  0 < λ <1.
                      a
                     Solution:
                                                  2  x
                                          k    d        f(t) dt         sin(πλ)


                                    y(x)=    x                  ,    k =       .
                                          x   dx       t[ln(x/t)] λ       πλ
                                                    a
                         x  y(t) dt
               17.                = f(x),    0 < λ <1.
                      a [ln(x/t)] λ
                     This is a special case of equation 1.9.42 with g(x)=ln x and h(x) ≡ 1.
                        Solution:                           x
                                                sin(πλ) d       f(t) dt
                                          y(x)=                         .
                                                   π   dx     t[ln(x/t)] 1–λ
                                                           a
                 1.4-2. Kernels Containing Power-Law and Logarithmic Functions
                       x


               18.      (x – t) ln(x – t)+ A y(t) dt = f(x).
                      a
                     Solution:
                                                                            z (A–C)z
                                     d 2     x                      d     ∞  x e
                             y(x)= –       ν A (x – t)f(t) dt,  ν A (x)=           dz,
                                    dx 2                            dx      Γ(z +1)
                                         a                              0
                     where C = 0.5772 ... is the Euler constant and Γ(z) is the gamma function.
                     •
                       Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).
                         x  ln(x – t)+ A
               19.              λ   y(t) dt = f(x),  0 < λ <1.
                      a    (x – t)
                     Solution:

                                      sin(πλ) d     x  F(t) dt         x
                               y(x)= –                     ,  F(x)=    ν h (x – t)f(t) dt,
                                        π    dx  a  (x – t) 1–λ      a
                                                     z hz
                                             d     ∞  x e
                                     ν h (x)=              dz,  h = A + ψ(1 – λ),
                                            dx  0  Γ(z +1)

                     where Γ(z) is the gamma function and ψ(z)= Γ(z)  is the logarithmic derivative of the
                                                                z
                     gamma function.
                     •
                       Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).



                 © 1998 by CRC Press LLC









                © 1998 by CRC Press LLC
                                                                                                             Page 41
   58   59   60   61   62   63   64   65   66   67   68