Page 58 - Handbook Of Integral Equations
P. 58

x

                            λ    µ      β    γ
               93.       Ax coth t + Bt coth x y(t) dt = f(x).
                      a
                                                                             µ
                                                                                           γ
                                                                 λ
                     This is a special case of equation 1.9.15 with g 1 (x)= Ax , h 1 (t) = coth t, g 2 (x)= B coth x,
                               β
                     and h 2 (t)= t .
                 1.3-5. Kernels Containing Combinations of Hyperbolic Functions
                       x


               94.       cosh[λ(x – t)] + A sinh[µ(x – t)] y(t) dt = f(x).
                      a
                     Let us differentiate the equation with respect to x and then eliminate the integral with the
                     hyperbolic cosine. As a result, we arrive at an equation of the form 2.3.16:
                                                  x
                                            2
                                 y(x)+(λ – A µ)   sinh[µ(x – t)]y(t) dt = f (x) – Aµf(x).

                                                                      x
                                                a
                       x


               95.       A cosh(λx)+ B sinh(µt)+ C y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.6 with g(x)= A cosh(λx) and h(t)= B sinh(µt)+ C.
                       x

                               2           2
               96.       A cosh (λx)+ B sinh (µt)+ C y(t) dt = f(x).
                      a
                                                                 2                  2
                     This is a special case of equation 1.9.6 with g(x) = cosh (λx) and h(t)= B sinh (µt)+ C.
                       x

               97.      sinh[λ(x – t)] cosh[λ(x + t)]y(t) dt = f(x).
                      a
                     Using the formula

                             sinh(α – β) cosh(α + β)=  1    sinh(2α) – sinh(2β) ,  α = λx,  β = λt,
                                                  2
                     we reduce the original equation to an equation of the form 1.3.37:
                                           x

                                            sinh(2λx) – sinh(2λt) y(t) dt =2f(x).
                                         a

                                       1 d     f (x)
                                               x
                        Solution: y(x)=               .
                                       λ dx cosh(2λx)
                         x
               98.      cosh[λ(x – t)] sinh[λ(x + t)]y(t) dt = f(x).
                      a
                     Using the formula

                             cosh(α – β) sinh(α + β)=  1    sinh(2α) + sinh(2β) ,  α = λx,  β = λt,
                                                  2
                     we reduce the original equation to an equation of the form 1.3.38 with A = B =1:
                                           x

                                            sinh(2λx) + sinh(2λt) y(t) dt =2f(x).
                                         a



                 © 1998 by CRC Press LLC









                © 1998 by CRC Press LLC
                                                                                                             Page 36
   53   54   55   56   57   58   59   60   61   62   63