Page 56 - Handbook Of Integral Equations
P. 56

x

                                     µ
                            µ
               76.      (tanh x – tanh t)y(t) dt = f(x).
                      a
                                                                 µ
                     This is a special case of equation 1.9.2 with g(x) = tanh x.
                                       1 d     cosh µ+1  xf (x)

                                                     x
                        Solution: y(x)=                   .
                                       µ dx    sinh µ–1  x
                         x
                               µ          µ
               77.       A tanh x + B tanh t y(t) dt = f(x).
                      a
                                                                                           µ
                     For B = –A, see equation 1.3.76. This is a special case of equation 1.9.4 with g(x) = tanh x.
                        Solution:
                                                         Aµ     x        Bµ
                                       1   d            –                –

                              y(x)=            tanh(λx)  A+B    tanh(λt)  A+B  f (t) dt .
                                                                              t
                                    A + B dx                 a
                       x
                                y(t) dt

               78.                           = f(x),    0 < µ <1.
                      a [tanh(λx) – tanh(λt)] µ
                     This is a special case of equation 1.9.42 with g(x) = tanh(λx) and h(x) ≡ 1.
                        Solution:
                                       λ sin(πµ) d     x         f(t) dt
                                 y(x)=                                           .
                                                          2
                                          π    dx  a cosh (λt)[tanh(λx) – tanh(λt)] 1–µ
                         x
                            β        γ
               79.       Ax + B tanh (λt)+ C]y(t) dt = f(x).
                      a
                                                                β
                                                                                γ
                     This is a special case of equation 1.9.6 with g(x)= Ax and h(t)= B tanh (λt)+ C.
                       x

                               γ         β
               80.       A tanh (λx)+ Bt + C]y(t) dt = f(x).
                      a
                                                                   γ               β
                     This is a special case of equation 1.9.6 with g(x)= A tanh (λx) and h(t)= Bt + C.
                       x

                            λ    µ      β     γ
               81.       Ax tanh t + Bt tanh x y(t) dt = f(x).
                      a
                                                                             µ
                                                                                           γ
                                                                 λ
                     This is a special case of equation 1.9.15 with g 1 (x)= Ax , h 1 (t) = tanh t, g 2 (x)= B tanh x,
                               β
                     and h 2 (t)= t .
                 1.3-4. Kernels Containing Hyperbolic Cotangent
                       x


               82.       coth(λx) – coth(λt) y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.2 with g(x) = coth(λx).
                                        1 d     2
                        Solution: y(x)= –    sinh (λx)f (x) .
                                                     x
                                        λ dx
                         x

               83.       A coth(λx)+ B coth(λt) y(t) dt = f(x).
                      a
                     For B = –A, see equation 1.3.82. This is a special case of equation 1.9.4 with g(x) = coth(λx).
                                         1   d             A     x        B

                        Solution: y(x)=          tanh(λx)  A+B   tanh(λt)  A+B  f (t) dt .
                                                                              t
                                       A + B dx                a
                 © 1998 by CRC Press LLC







                © 1998 by CRC Press LLC
                                                                                                             Page 34
   51   52   53   54   55   56   57   58   59   60   61