Page 59 - Handbook Of Integral Equations
P. 59

x


               99.       A cosh(λx) sinh(µt)+ B cosh(βx) sinh(γt) y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.15 with g 1 (x)= A cosh(λx), h 1 (t) = sinh(µt), g 2 (x)=
                     B cosh(βx), and h 2 (t) = sinh(γt).
                       x


               100.      sinh(λx) cosh(µt) + sinh(βx) cosh(γt) y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.15 with g 1 (x) = sinh(λx), h 1 (t) = cosh(µt), g 2 (x)=
                     sinh(βx), and h 2 (t) = cosh(γt).

                         x

               101.      cosh(λx) cosh(µt) + sinh(βx) sinh(γt) y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.15 with g 1 (x) = cosh(λx), h 1 (t) = cosh(µt), g 2 (x)=
                     sinh(βx), and h 2 (t) = sinh(γt).
                       x

                               β            γ
               102.      A cosh (λx)+ B sinh (µt) y(t) dt = f(x).
                      a
                                                                   β
                                                                                      γ
                     This is a special case of equation 1.9.6 with g(x)= A cosh (λx) and h(t)= B sinh (µt).
                         x
                              β             γ
               103.      A sinh (λx)+ B cosh (µt) y(t) dt = f(x).
                      a
                                                                   β                  γ
                     This is a special case of equation 1.9.6 with g(x)= A sinh (λx) and h(t)= B cosh (µt).
                         x
                            λ    µ      β    γ
               104.      Ax cosh t + Bt sinh x y(t) dt = f(x).
                      a
                                                                             µ
                                                                                           γ
                                                                 λ
                     This is a special case of equation 1.9.15 with g 1 (x)= Ax , h 1 (t) = cosh t, g 2 (x)= B sinh x,
                               β
                     and h 2 (t)= t .
                       x

                                                   2
               105.      (x – t) sinh[λ(x – t)] – λ(x – t) cosh[λ(x – t)] y(t) dt = f(x).
                      a
                     Solution:
                                                           x
                                                  y(x)=    g(t) dt,
                                                         a
                     where
                                                 2       6    t
                                       π   1    d     2          5
                               g(t)=               – λ      (t – τ) 2 I 5 [λ(t – τ)] f(τ) dτ.
                                       2λ 64λ 5  dt 2     a         2
                       x
                          sinh[λ(x – t)]
               106.                   – λ cosh[λ(x – t)] y(t) dt = f(x).
                             x – t
                      a
                     Solution:
                                                  2      3    x
                                            1    d     2
                                     y(x)=          – λ      sinh[λ(x – t)]f(t) dt.
                                           2λ 4  dx 2      a
                         x    √          √           √

               107.      sinh λ x – t – λ x – t cosh λ x – t  y(t) dt = f(x),  f(a)= f (a)=0.

                                                                                    x
                      a
                     Solution:                                √
                                                4  d 3     x  cos λ x – t
                                        y(x)= –              √        f(t) dt.
                                               πλ dx 3        x – t
                                                 3
                                                       a
                 © 1998 by CRC Press LLC







                © 1998 by CRC Press LLC
                                                                                                             Page 37
   54   55   56   57   58   59   60   61   62   63   64