Page 57 - Handbook Of Integral Equations
P. 57

x


               84.       A coth(λx)+ B coth(µt)+ C y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.6 with g(x)= A coth(λx) and h(t)= B coth(µt)+ C.
                       x

                            2          2
               85.       coth (λx) – coth (λt) y(t) dt = f(x).
                      a
                                                                 2
                     This is a special case of equation 1.9.2 with g(x) = coth (λx).
                                               3
                                        d  sinh (λx)f (x)

                                                    x
                        Solution: y(x)= –                .
                                        dx   2λ cosh(λx)
                         x
                              2            2
               86.       A coth (λx)+ B coth (λt) y(t) dt = f(x).
                      a
                                                                                         2
                     For B = –A, see equation 1.3.85. This is a special case of equation 1.9.4 with g(x) = coth (λx).
                                         1   d            2A     x        2B
                        Solution: y(x)=          tanh(λx)  A+B   tanh(λt)  A+B  f (t) dt .

                                                                              t
                                       A + B dx                a
                       x

                              2            2
               87.       A coth (λx)+ B coth (µt)+ C y(t) dt = f(x).
                      a
                                                                   2
                                                                                      2
                     This is a special case of equation 1.9.6 with g(x)= A coth (λx) and h(t)= B coth (µt)+ C.
                       x

                                           n
               88.       coth(λx) – coth(λt)  y(t) dt = f(x),  n =1, 2, ...
                      a

                     The right-hand side of the equation is assumed to satisfy the conditions f(a)= f (a)= ··· =
                                                                                     x
                     f  (n) (a)=0.
                      x                                         n+1
                                          (–1) n       2     d
                        Solution: y(x)=       2     sinh (λx)     f(x).
                                        n
                                       λ n! sinh (λx)       dx
                         x
                            µ        µ
               89.      (coth x – coth t)y(t) dt = f(x).
                      a
                                                                 µ
                     This is a special case of equation 1.9.2 with g(x) = coth x.
                                        1 d     sinh µ+1  xf (x)

                                                      x
                        Solution: y(x)= –                  .
                                        µ dx   cosh µ–1  x
                       x

                              µ          µ
               90.       A coth x + B coth t y(t) dt = f(x).
                      a
                                                                                           µ
                     For B = –A, see equation 1.3.89. This is a special case of equation 1.9.4 with g(x) = coth x.
                        Solution:
                                          1   d          Aµ     x       Bµ

                                  y(x)=             tanh x   A+B    tanh t   A+B  f (t) dt .
                                                                          t
                                        A + B dx             a
                       x

                            β        γ
               91.       Ax + B coth (λt)+ C]y(t) dt = f(x).
                      a
                                                                                γ
                                                                β
                     This is a special case of equation 1.9.6 with g(x)= Ax and h(t)= B coth (λt)+ C.
                         x
                              γ         β
               92.       A coth (λx)+ Bt + C]y(t) dt = f(x).
                      a
                                                                   γ               β
                     This is a special case of equation 1.9.6 with g(x)= A coth (λx) and h(t)= Bt + C.
                 © 1998 by CRC Press LLC
                © 1998 by CRC Press LLC
                                                                                                             Page 35
   52   53   54   55   56   57   58   59   60   61   62