Page 54 - Handbook Of Integral Equations
P. 54

x
                             y(t) dt
               61.                      = f(x),    0 < λ <1.
                      a (sinh x – sinh t) λ
                     Solution:                            x
                                              sin(πλ) d       cosh tf(t) dt
                                        y(x)=                             .
                                                π    dx  a  (sinh x – sinh t) 1–λ
                         x
               62.      (x – t) sinh[λ(x – t)]y(t) dt = f(x),  f(a)= f (a)= f      (a)=0.

                                                                  x      xx
                      a
                     Double differentiation yields
                                x                       x


                            2λ    cosh[λ(x – t)]y(t) dt + λ 2  (x – t) sinh[λ(x – t)]y(t) dt = f (x).
                                                                                  xx
                                a                       a
                     Eliminating the second term on the left-hand side with the aid of the original equation, we
                     arrive at an equation of the form 1.3.1:
                                        x

                                                            1           2
                                         cosh[λ(x – t)]y(t) dt =  f (x) – λ f(x) .

                                                                xx
                                       a                    2λ
                        Solution:                                     x
                                              1                 1  3


                                       y(x)=   f xxx (x) – λf (x)+ λ  f(t) dt.
                                                          x
                                                                2
                                             2λ                     a
                       x

                            β        γ
               63.       Ax + B sinh (λt)+ C]y(t) dt = f(x).
                      a
                                                                                γ
                                                                β
                     This is a special case of equation 1.9.6 with g(x)= Ax and h(t)= B sinh (λt)+ C.
                         x
                              γ         β
               64.       A sinh (λx)+ Bt + C]y(t) dt = f(x).
                      a
                                                                                   β
                                                                   γ
                     This is a special case of equation 1.9.6 with g(x)= A sinh (λx) and h(t)= Bt + C.
                         x
                            λ    µ      β    γ
               65.       Ax sinh t + Bt sinh x y(t) dt = f(x).
                      a
                                                                 λ
                                                                                           γ
                                                                             µ
                     This is a special case of equation 1.9.15 with g 1 (x)= Ax , h 1 (t) = sinh t, g 2 (x)= B sinh x,
                               β
                     and h 2 (t)= t .
                 1.3-3. Kernels Containing Hyperbolic Tangent
                         x

               66.       tanh(λx) – tanh(λt) y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.2 with g(x) = tanh(λx).
                                       1     2
                        Solution: y(x)=  cosh (λx)f (x) .

                                                  x
                                       λ              x
                         x

               67.       A tanh(λx)+ B tanh(λt) y(t) dt = f(x).
                      a
                     For B = –A, see equation 1.3.66. This is a special case of equation 1.9.4 with g(x) = tanh(λx).
                                         1   d            –  A     x       –  B

                        Solution: y(x)=          tanh(λx)  A+B    tanh(λt)  A+B  f (t) dt .
                                                                               t
                                       A + B dx                a
                 © 1998 by CRC Press LLC





                © 1998 by CRC Press LLC
                                                                                                             Page 32
   49   50   51   52   53   54   55   56   57   58   59