Page 50 - Handbook Of Integral Equations
P. 50

x



               41.       A 1 sinh[λ 1 (x – t)] + A 2 sinh[λ 2 (x – t)] y(t) dt = f(x),  f(a)= f (a)=0.
                                                                                  x
                      a
                     1 . Introduce the notation
                      ◦
                                     x                           x

                                I 1 =  sinh[λ 1 (x – t)]y(t) dt,  I 2 =  sinh[λ 2 (x – t)]y(t) dt,
                                     a                          a
                                     x                           x

                               J 1 =   cosh[λ 1 (x – t)]y(t) dt,  J 2 =  cosh[λ 2 (x – t)]y(t) dt.
                                     a                          a
                     Let us successively differentiate the integral equation four times. As a result, we have (the
                     first line is the original equation):
                               A 1 I 1 + A 2 I 2 = f,  f = f(x),                            (1)

                               A 1 λ 1 J 1 + A 2 λ 2 J 2 = f ,                              (2)
                                                 x
                                                 2       2

                               (A 1 λ 1 + A 2 λ 2 )y + A 1 λ I 1 + A 2 λ I 2 = f ,          (3)
                                                 1       2     xx
                                                  3
                                                          3
                               (A 1 λ 1 + A 2 λ 2 )y + A 1 λ J 1 + A 2 λ J 2 = f       ,    (4)

                                            x     1       2     xxx
                                                                          4
                                                                  4
                                                          3
                                                    3
                               (A 1 λ 1 + A 2 λ 2 )y     +(A 1 λ + A 2 λ )y + A 1 λ I 1 + A 2 λ I 2 = f        .  (5)
                                            xx      1     2       1       2     xxxx
                     Eliminating I 1 and I 2 from (1), (3), and (5), we arrive at the following second-order linear
                     ordinary differential equation with constant coefficients:
                                                                        2
                                                                           2
                                                                                   2 2



                           (A 1 λ 1 + A 2 λ 2 )y xx  – λ 1 λ 2 (A 1 λ 2 + A 2 λ 1 )y = f xxxx  – (λ + λ )f xx  + λ λ f.  (6)
                                                                                   1 2
                                                                        1
                                                                           2
                     The initial conditions can be obtained by substituting x = a into (3) and (4):


                                (A 1 λ 1 + A 2 λ 2 )y(a)= f (a),  (A 1 λ 1 + A 2 λ 2 )y (a)= f       (a).  (7)
                                                   xx                  x     xxx
                     Solving the differential equation (6) under conditions (7) allows us to find the solution of the
                     integral equation.
                     2 . Denote
                      ◦
                                                        A 1 λ 2 + A 2 λ 1
                                                ∆ = λ 1 λ 2        .
                                                        A 1 λ 1 + A 2 λ 2
                        2.1. Solution for ∆ >0:
                                                                    x

                              (A 1 λ 1 + A 2 λ 2 )y(x)= f (x)+ Bf(x)+ C  sinh[k(x – t)]f(t) dt,
                                                 xx
                                                                  a
                                 √                           1
                                                    2
                                                                      2
                                                2
                                                                  2
                                                                          2
                                                                                 2 2
                              k =  ∆,   B = ∆ – λ – λ ,  C = √  ∆ – (λ + λ )∆ + λ λ .
                                                1   2                 1   2      1 2
                                                             ∆
                        2.2. Solution for ∆ <0:
                                                                    x

                               (A 1 λ 1 + A 2 λ 2 )y(x)= f (x)+ Bf(x)+ C  sin[k(x – t)]f(t) dt,
                                                 xx
                                                                  a
                                √                            1
                                                2
                                                                   2
                                                    2
                                                                                  2 2
                                                                           2
                                                                       2
                             k =  –∆,   B = ∆ – λ – λ ,  C = √   ∆ – (λ + λ )∆ + λ λ .
                                                1   2                  1   2      1 2
                                                             –∆
                        2.3. Solution for ∆ =0:
                                                                          x

                                                                    2 2
                                                        2
                                                            2

                              (A 1 λ 1 + A 2 λ 2 )y(x)= f (x) – (λ + λ )f(x)+ λ λ  (x – t)f(t) dt.
                                                xx      1   2       1 2
                                                                         a
                        2.4. Solution for ∆ = ∞:
                                                              2 2
                                                   2
                                                       2

                                          f xxxx  – (λ + λ )f xx  + λ λ f

                                                       2
                                                   1
                                                              1 2
                                    y(x)=           3      3      ,    f = f(x).
                                                 A 1 λ + A 2 λ
                                                    1      2
                        In the last case, the relation A 1 λ 1 + A 2 λ 2 = 0 is valid, and the right-hand side of the
                     integral equation is assumed to satisfy the conditions f(a)= f (a)= f (a)= f xxx (a)=0.



                                                                      x
                                                                             xx
                 © 1998 by CRC Press LLC
                © 1998 by CRC Press LLC
                                                                                                             Page 28
   45   46   47   48   49   50   51   52   53   54   55