Page 48 - Handbook Of Integral Equations
P. 48

√
                         x  cosh λ x – t
               28.          √          y(t) dt = f(x).
                      a       x – t
                     Solution:                               √
                                                      x
                                                1 d     cos λ x – t

                                         y(x)=             √        f(t) dt.
                                                π dx         x – t
                                                     a
                              √
                       x
                         cosh λ x – t
                                  2  2
               29.          √           y(t) dt = f(x).
                               2
                      0       x – t 2
                     Solution:                              √
                                                               2
                                              2 d     x  cos λ x – t 2
                                        y(x)=         t    √         f(t) dt.
                                              π dx  0       x – t 2
                                                             2
                               √
                       ∞  cosh λ t – x
                                  2   2
               30.           √           y(t) dt = f(x).
                                2
                      x        t – x 2
                     Solution:                               √
                                                                2
                                              2 d     ∞  cos λ t – x 2
                                       y(x)= –         t    √         f(t) dt.
                                              π dx            2   2
                                                    x        t – x
                       x

                            β        γ
               31.       Ax + B cosh (λt)+ C]y(t) dt = f(x).
                      a
                                                                                γ
                                                                β
                     This is a special case of equation 1.9.6 with g(x)= Ax and h(t)= B cosh (λt)+ C.
                       x

                               γ        β
               32.       A cosh (λx)+ Bt + C]y(t) dt = f(x).
                      a
                                                                                   β
                                                                   γ
                     This is a special case of equation 1.9.6 with g(x)= A cosh (λx) and h(t)= Bt + C.
                         x
                            λ    µ      β     γ
               33.       Ax cosh t + Bt cosh x y(t) dt = f(x).
                      a
                                                                            µ
                                                                                           γ
                                                                 λ
                     This is a special case of equation 1.9.15 with g 1 (x)= Ax , h 1 (t) = cosh t, g 2 (x)= B cosh x,
                               β
                     and h 2 (t)= t .
                 1.3-2. Kernels Containing Hyperbolic Sine
                       x


               34.      sinh[λ(x – t)]y(t) dt = f(x),  f(a)= f (a)=0.
                                                            x
                      a
                                   1

                     Solution: y(x)=  f (x) – λf(x).
                                      xx
                                   λ
                       x


               35.       sinh[λ(x – t)] + b y(t) dt = f(x).
                      a
                     Differentiating the equation with respect to x, we arrive at an equation of the form 2.3.3:
                                             λ     x                 1

                                       y(x)+      cosh[λ(x – t)]y(t) dt =  f (x).
                                                                        x
                                             b  a                    b
                        Solution:
                                                1          x

                                          y(x)=   f (x)+    R(x – t)f (t) dt,

                                                   x
                                                                   t
                                                 b       a
                                                                              √
                                    λ       λx      λ                       λ 1+4b  2
                             R(x)=    exp –          sinh(kx) – cosh(kx) ,  k =      .
                                    b 2     2b   2bk                            2b
                 © 1998 by CRC Press LLC
                © 1998 by CRC Press LLC
                                                                                                             Page 26
   43   44   45   46   47   48   49   50   51   52   53