Page 46 - Handbook Of Integral Equations
P. 46

x

               14.      [cosh(λx) cosh(µt) + cosh(βx) cosh(γt)]y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.15 with g 1 (x) = cosh(λx), h 1 (t) = cosh(µt), g 2 (x)=
                     cosh(βx), and h 2 (t) = cosh(γt).

                       x

                            3
               15.      cosh [λ(x – t)]y(t) dt = f(x).
                      a
                                       3
                     Using the formula cosh β =  1  cosh 3β +  3  cosh β, we arrive at an equation of the form 1.3.8:
                                            4         4
                                     x

                                       1  cosh[3λ(x – t)] +  3  cosh[λ(x – t)] y(t) dt = f(x).

                                       4               4
                                    a
                       x

                            3          3

               16.       cosh (λx) – cosh (λt) y(t) dt = f(x),  f(a)= f (a)=0.
                                                                     x
                      a

                                    1 d         f (x)
                                                 x
                     Solution: y(x)=                       .
                                                     2
                                   3λ dx sinh(λx) cosh (λx)
                         x
                               3           3
               17.       A cosh (λx)+ B cosh (λt) y(t) dt = f(x).
                      a
                                                                                         3
                     For B =–A, see equation 1.3.16. This is a special case of equation 1.9.4 with g(x)=cosh (λx).
                        Solution:
                                      1    d            –  3A     x       –  3B

                              y(x)=            cosh(λx)  A+B    cosh(λt)  A+B  f (t) dt .
                                                                              t
                                    A + B dx                 a
                         x
                               2                           2
               18.       A cosh (λx) cosh(µt)+ B cosh(βx) cosh (γt) y(t) dt = f(x).
                      a
                                                                     2
                     This is a special case of equation 1.9.15 with g 1 (x)= A cosh (λx), h 1 (t) = cosh(µt), g 2 (x)=
                                            2
                     B cosh(βx), and h 2 (t) = cosh (γt).
                       x

                            4
               19.      cosh [λ(x – t)]y(t) dt = f(x).
                      a
                     Let us transform the kernel of the integral equation using the formula
                                    4
                                                             3
                                 cosh β =  1  cosh 4β +  1  cosh 2β + ,  where  β = λ(x – t),
                                         8         2         8
                     and differentiate the resulting equation with respect to x. Then we obtain an equation of the
                     form 2.3.18:
                                        x

                                           1
                               y(x)+ λ      sinh[4λ(x – t)] + sinh[2λ(x – t)] y(t) dt = f (x).

                                           2                                    x
                                        a
                         x
                                          n
               20.      [cosh(λx) – cosh(λt)] y(t) dt = f(x),  n =1, 2, ...
                      a

                     The right-hand side of the equation is assumed to satisfy the conditions f(a)= f (a)= ··· =
                                                                                     x
                     f  (n) (a)=0.
                      x
                                                           n+1
                                       sinh(λx)   1    d
                        Solution: y(x)=                      f(x).
                                         n
                                        λ n!   sinh(λx) dx
                 © 1998 by CRC Press LLC


                © 1998 by CRC Press LLC
                                                                                                             Page 24
   41   42   43   44   45   46   47   48   49   50   51