Page 43 - Handbook Of Integral Equations
P. 43

x

                                 2           2
               49.       A exp(λx )+ B exp(λt )+ C y(t) dt = f(x).
                      a
                                                                   2
                     This is a special case of equation 1.9.5 with g(x) = exp(λx ).
                         x
                                 2           2
               50.       A exp(λx )+ B exp(µt ) y(t) dt = f(x).
                      a
                                                                                       2
                                                                     2
                     This is a special case of equation 1.9.6 with g(x)= A exp(λx ) and h(t)= B exp(µt ).
                         x  √
                                          2
                                      2
               51.        x – t exp[λ(x – t )]y(t) dt = f(x).
                      a
                     Solution:
                                                                    2
                                             2       2  d 2     x  exp(–λt )
                                       y(x)=   exp(λx )        √      f(t) dt.
                                             π         dx 2      x – t
                                                           a
                                   2
                                2
                         x  exp[λ(x – t )]
               52.          √         y(t) dt = f(x).
                      a       x – t
                     Solution:
                                                                    2
                                              1      2  d     x  exp(–λt )
                                       y(x)=   exp(λx )        √      f(t) dt.
                                             π         dx  a    x – t
                       x

                                      2
                             λ
                                          2
               53.      (x – t) exp[µ(x – t )]y(t) dt = f(x),  0 < λ <1.
                      a
                     Solution:
                                                             2
                                               d 2     x  exp(–µt )         sin(πλ)
                                             2
                                y(x)= k exp(µx )              f(t) dt,  k =        .
                                               dx 2  a  (x – t) λ             πλ
                       x

                               β   β
               54.      exp[λ(x – t )]y(t) dt = f(x).
                      a

                     Solution: y(x)= f (x) – λβx β–1 f(x).
                                    x
               1.3. Equations Whose Kernels Contain Hyperbolic
                      Functions
                 1.3-1. Kernels Containing Hyperbolic Cosine

                         x
               1.       cosh[λ(x – t)]y(t) dt = f(x).
                      a
                                               x

                     Solution: y(x)= f (x) – λ 2  f(x) dx.
                                    x
                                             a
                       x



               2.        cosh[λ(x – t)] – 1 y(t) dt = f(x),  f(a)= f (a)= f      (x)=0.
                                                                  x      xx
                      a
                                    1
                     Solution: y(x)=  f xxx (x) – f (x).


                                               x
                                   λ 2
                 © 1998 by CRC Press LLC






                © 1998 by CRC Press LLC
                                                                                                             Page 21
   38   39   40   41   42   43   44   45   46   47   48