Page 42 - Handbook Of Integral Equations
P. 42

x  e λ(x–t)
               41.       √     y(t) dt = f(x).
                      a   x – t
                     Solution:                              x
                                                  1  λx  d     e –λt f(t) dt
                                            y(x)=   e          √      .
                                                  π    dx        x – t
                                                           a
                       x

                             λ µ(x–t)
               42.      (x – t) e   y(t) dt = f(x),  0 < λ <1.
                      a
                     Solution:                      x
                                               d 2     e –µt f(t) dt   sin(πλ)
                                            µx
                                     y(x)= ke                  ,    k =       .
                                               dx 2    (x – t) λ         πλ
                                                   a
                       x  λ(x–t)
                         e
               43.              y(t) dt = f(x),  0 < µ <1.
                      a (x – t) µ
                     Solution:                                x
                                               sin(πµ)  λx  d     e –λt f(t)
                                         y(x)=        e                 dt.
                                                  π      dx    (x – t) 1–µ
                                                             a
                       x

                         √    √ 
 λ µ(x–t)
               44.         x –  t  e     y(t) dt = f(x),  0 < λ <1.
                      a
                     The substitution u(x)= e –µx y(x) leads to an equation of the form 1.1.48:
                                             x

                                               √    √ 
 λ        –µx
                                                 x –  t  u(t) dt = e  f(x).
                                            a
                         x  e µ(x–t) y(t) dt
               45.        √        λ  = f(x),   0 < λ <1.
                                 t
                      a    x –  √
                     The substitution u(x)= e –µx y(x) leads to an equation of the form 1.1.49:

                                                x
                                                   u(t) dt    –µx

                                                  √    √    = e  f(x).
                                               a ( x –  t) λ
                         x  e λ(x–t)
               46.       √       y(t) dt = f(x).
                            2
                      a   x – t 2
                                 2  λx  d     x  te –λt
                     Solution: y =  e       √       f(t) dt.
                                 π    dx  a   x – t 2
                                               2
                       x

                               2
                                   2
               47.      exp[λ(x – t )]y(t) dt = f(x).
                      a
                     Solution: y(x)= f (x) – 2λxf(x).

                                    x
                         x
                               2
                                        2
               48.      [exp(λx ) – exp(λt )]y(t) dt = f(x).
                      a
                                                                   2
                     This is a special case of equation 1.9.2 with g(x) = exp(λx ).
                                       1 d     f (x)

                                                x
                        Solution: y(x)=                .
                                                     2
                                       2λ dx x exp(λx )
                 © 1998 by CRC Press LLC







                © 1998 by CRC Press LLC
                                                                                                             Page 20
   37   38   39   40   41   42   43   44   45   46   47