Page 41 - Handbook Of Integral Equations
P. 41

x


               31.      (x – t)e λ(x–t) y(t) dt = f(x),  f(a)= f (a)=0.
                                                           x
                      a
                                                    2
                     Solution: y(x)= f (x) – 2λf (x)+ λ f(x).


                                             x
                                    xx
                       x

               32.      (Ax + Bt + C)e λ(x–t) y(t) dt = f(x).
                      a
                     The substitution u(x)= e –λx y(x) leads to an equation of the form 1.1.3:
                                            x

                                             (Ax + Bt + C)u(t) dt = e –λx f(x).
                                            a
                       x

               33.      (Axe λt  + Bte µx )y(t) dt = f(x).
                      a
                                                                                            µx
                                                                            λt
                     This is a special case of equation 1.9.15 with g 1 (x)= Ax, h 1 (t)= e , and g 2 (x)= Be ,
                     h 2 (t)= t.
                         x
                             λ(x–t)    µ(x–t)
               34.       Axe      + Bte      y(t) dt = f(x).
                      a
                                                                                        µx
                                                                  λx
                     This is a special case of equation 1.9.15 with g 1 (x)= Axe , h 1 (t)= e –λt , g 2 (x)= Be , and
                     h 2 (t)= te –µt .
                       x

                             2 λ(x–t)
               35.      (x – t) e   y(t) dt = f(x),  f(a)= f (a)= f      (a)=0.

                                                            x       xx
                      a
                                                                 3

                     Solution: y(x)=  1    f       (x) – 3λf (x)+3λ f (x) – λ f(x) .

                                                         2
                                   2  xxx       xx         x
                       x

                             n λ(x–t)
               36.      (x – t) e   y(t) dt = f(x),  n =1, 2, ...
                      a
                     It is assumed that f(a)= f (a)= ··· = f x (n) (a)=0.

                                          x
                                       1  λx  d n+1     –λx
                        Solution: y(x)=  e        e  f(x) .
                                       n!   dx n+1
                       x

                            β
                                  λt
               37.      (Ax + Be )y(t) dt = f(x).
                      a
                                                                β
                                                                             λt
                     This is a special case of equation 1.9.6 with g(x)= Ax and h(t)= Be .
                       x

                                  β
               38.      (Ae λx  + Bt )y(t) dt = f(x).
                      a
                                                                              β
                     This is a special case of equation 1.9.6 with g(x)= Ae λx  and h(t)= Bt .
                         x
                            β λt
                                    γ µx
               39.      (Ax e   + Bt e   )y(t) dt = f(x).
                      a
                                                                                        µx
                                                                            λt
                                                                   β
                     This is a special case of equation 1.9.15 with g 1 (x)= Ax , h 1 (t)= e , g 2 (x)= Be , and
                            γ
                     h 2 (t)= t .
                       x
                              √
               40.      e λ(x–t)  x – ty(t) dt = f(x).
                      a
                     Solution:                              x
                                                  2  λx  d 2     e –λt f(t) dt
                                            y(x)=  e           √       .
                                                  π    dx 2      x – t
                                                           a
                 © 1998 by CRC Press LLC
                © 1998 by CRC Press LLC
                                                                                                             Page 19
   36   37   38   39   40   41   42   43   44   45   46