Page 39 - Handbook Of Integral Equations
P. 39

x

                           λ(x–t)    µ(x–t)   β(x–t)
               15.       Ae     + Be      + Ce     – A – B – C y(t) dt = f(x),  f(a)= f (a)=0.

                                                                                       x
                      a
                     Differentiating with respect to x, we arrive at an equation of the form 1.2.14:
                                     x

                                           λ(x–t)   µ(x–t)    β(x–t)

                                       Aλe     + Bµe     + Cβe     y(t) dt = f (x).
                                                                            x
                                    a
                       x

                           λx+µt  µx+λt

               16.       e     – e     y(t) dt = f(x),   f(a)= f (a)=0.
                                                                x
                      a
                                                                            µt
                     This is a special case of equation 1.9.11 with g(x)= e λx  and h(t)= e .
                        Solution:

                                                 f xx  – (λ + µ)f (x)+ λµf(x)

                                                            x
                                           y(x)=                        .
                                                    (λ – µ) exp[(λ + µ)x]
                         x
                            λx+µt    µx+λt
               17.       Ae      + Be      y(t) dt = f(x).
                      a
                     For B = –A, see equation 1.2.16. This is a special case of equation 1.9.12 with g(x)= e λx
                              µt
                     and h(t)= e .
                        Solution:
                                 1     d     A     x  B  d     f(t)               	  µ – λ
                       y(x)=               Φ (x)    Φ (t)        dt ,    Φ(x)=exp        x .
                             (A + B)e µx  dx     a       dt  e µt                   A + B
                       x

                            λx+µt    βx+γt
               18.       Ae      + Be      y(t) dt = f(x).
                      a
                                                                  λx
                                                                             µt
                                                                                        βx
                     This is a special case of equation 1.9.15 with g 1 (x)= Ae , h 1 (t)= e , g 2 (x)= Be , and
                            γt
                     h 2 (t)= e .
                       x

                            2λx     2βt    λx     βt
               19.       Ae    + Be    + Ce   + De   + E y(t) dt = f(x).
                      a
                                                                                         βt
                     This is a special case of equation 1.9.6 with g(x)= Ae 2λx +Ce λx  and h(t)= Be 2βt +De +E.
                       x

                            λx+βt    2βt     λx     βt
               20.       Ae      + Be   + Ce    + De   + E y(t) dt = f(x).
                      a
                                                                 λx
                     This is a special case of equation 1.9.15 with g 1 (x)= e , h 1 (t)= Ae βt  + D, and g 2 (x)=1,
                     h 2 (t)= Be 2βt  + De βt  + E.
                       x

                            2λx     λx+βt    λx      βt
               21.       Ae    + Be      + Ce   + De   + E y(t) dt = f(x).
                      a
                                                                                  βt
                     This is a special case of equation 1.9.15 with g 1 (x)= Be λx  + D, h 1 (t)= e , and g 2 (x)=
                     Ae 2λx  + Ce λx  + E, h 2 (t)=1.
                       x

                               λx  µt   µx
               22.       1+ Ae   (e  – e  )y(t) dt = f(x).
                      a
                                                                              λx
                     This is a special case of equation 1.9.13 with g(x)= e µx  and h(x)= Ae .
                        Solution:
                                               x
                                  d     λx        f(t)       dt              Aµ  (λ+µ)x
                            y(x)=     e Φ(x)                ,    Φ(x)=exp       e      .
                                  dx          a   e λt  t  Φ(t)            λ + µ
                 © 1998 by CRC Press LLC


                © 1998 by CRC Press LLC
                                                                                                             Page 17
   34   35   36   37   38   39   40   41   42   43   44