Page 35 - Handbook Of Integral Equations
P. 35

x
                               1
               47.       b +        y(t) dt = f(x),   0 < λ <1.
                            (x – t) λ
                      a
                     Rewrite the equation in the form
                                              x                   x
                                                y(t) dt
                                                      = f(x) – b  y(t) dt.
                                               (x – t) λ
                                             a                  a
                     Assuming the right-hand side to be known, we solve this equation as the generalized Abel
                     equation 1.1.46. After some manipulations, we arrive at Abel’s equation of the second
                     kind 2.1.60:
                            b sin(πλ)     x  y(t) dt                    sin(πλ) d     x  f(t) dt
                      y(x)+                     = F(x),   where  F(x)=                       .
                               π       (x – t) 1–λ                        π   dx     (x – t) 1–λ
                                     a                                            a
                       x

                         √    √ 
 λ
               48.         x –  t  y(t) dt = f(x),  0 < λ <1.
                      a
                     Solution:
                                                  2  x
                                       k  √   d           f(t) dt           sin(πλ)


                                y(x)= √     x         √  √     √ 
 ,     k =       .
                                                                  λ
                                        x     dx    a   t   x –  t            πλ
                         x  y(t) dt
               49.        √    √ 
 λ  = f(x),   0 < λ <1.
                      a    x –   t
                     Solution:
                                              sin(πλ) d     x   f(t) dt
                                        y(x)=               √  √       1–λ  .
                                                2π   dx             √
                                                         a   t   x –  t
                         x
                            λ     µ
               50.       Ax + Bt    y(t) dt = f(x).
                      a
                                                                             µ
                                                                λ
                     This is a special case of equation 1.9.6 with g(x)= Ax and h(t)= Bt .
                       x

                               λ µ    λ+µ
               51.       1+ A(x t – x    ) y(t) dt = f(x).
                      a
                                                                 µ
                                                                             λ
                     This is a special case of equation 1.9.13 with g(x)= Ax and h(x)= x .
                        Solution:
                                  d     x λ     x     –λ                   	  Aµ   µ+λ
                            y(x)=             t f(t) Φ(t) dt ,    Φ(x)=exp –      x    .
                                  dx  Φ(x)  a        t                       µ + λ
                       x

                            β γ     δ λ
               52.       Ax t + Bx t    y(t) dt = f(x).
                      a
                                                                              γ
                                                                    β
                                                                                         δ
                     This is a special case of equation 1.9.15 with g 1 (x)= Ax , h 1 (t)= t , g 2 (x)= Bx , and
                            λ
                     h 2 (t)= t .
                       x

                            λ  µ   µ      β  γ   γ
               53.       Ax (t – x )+ Bx (t – x ) y(t) dt = f(x).
                      a
                                                                              µ
                                                                                         β
                                                                   λ
                     This is a special case of equation 1.9.45 with g 1 (x)= Ax , h 1 (x)= x , g 2 (x)= Bx , and
                            γ
                     h 2 (x)= x .
                 © 1998 by CRC Press LLC






                © 1998 by CRC Press LLC
                                                                                                             Page 13
   30   31   32   33   34   35   36   37   38   39   40