Page 30 - Handbook Of Integral Equations
P. 30

x
                         y(t) dt
               27.              = f(x),    a >0,  a + b >0.
                         ax + bt
                      0
                                                                n
                      ◦
                     1 . For a polynomial right-hand side, f(x)=  N    A n x , the solution has the form
                                                         n=0
                                               N                    1  n
                                                  A n  n             t dt
                                         y(x)=       x ,    B n =        .
                                                  B n             0  a + bt
                                               n=0
                                          n
                     2 .For f(x)= x λ  N    A n x , where λ is an arbitrary number (λ > –1), the solution has the
                      ◦
                                    n=0
                     form
                                                N                    1  λ+n
                                                   A n  n            t   dt
                                              λ
                                       y(x)= x        x ,    B n =         .
                                                   B n             0  a + bt
                                                n=0

                      ◦
                     3 .For f(x)=ln x   A n x n  , the solution has the form
                                    	 N
                                      n=0
                                 N          N                      1  n            1  n
                                    A n  n     A n C n  n           t dt            t ln t
                        y(x)=ln x      x –        2  x ,   B n =         ,  C n =        dt.
                                    B n         B n              0  a + bt       0  a + bt
                                 n=0        n=0
                     4 . For some other special forms of the right-hand side (see items 4 and 5, equation 1.1.26),
                      ◦
                     the solution may be found by the method of undetermined coefficients.
                       x
                          y(t) dt
               28.                = f(x),   a >0,   a + b >0.
                           2
                      0  ax + bt 2
                                                                n
                      ◦
                     1 . For a polynomial right-hand side, f(x)=  N    A n x , the solution has the form
                                                         n=0
                                              N                     1
                                                 A n  n+1
                                                                     t n+1  dt
                                        y(x)=       x   ,    B n =       2  .
                                                 B n              0  a + bt
                                              n=0
                                                  2
                        Example. For a = b = 1 and f(x)= Ax + Bx + C, the solution of the integral equation is:
                                                   2A      4B     2C
                                                               2
                                                        3
                                             y(x)=     x +    x +    x.
                                                  1 – ln 2  4 – π  ln 2
                                          n
                      ◦
                     2 .For f(x)= x λ  N    A n x , where λ is an arbitrary number (λ > –1), the solution has the
                                    n=0
                     form
                                               N                     1  t λ+n+1  dt
                                      y(x)= x λ     A n  x n+1 ,  B n =    2  .
                                                  B n              0  a + bt
                                              n=0

                     3 .For f(x)=ln x   A n x n  , the solution has the form
                                    	 N
                      ◦
                                      n=0
                               N           N                        1               1
                                                                    t n+1  dt        t n+1  ln t
                                  A n  n+1    A n C n  n+1
                     y(x)=ln x       x   –       2  x  ,    B n =        2  ,  C n =      2  dt.
                                  B n          B n                0  a + bt       0  a + bt
                              n=0         n=0
                 © 1998 by CRC Press LLC









                © 1998 by CRC Press LLC
                                                                                                             Page 8
   25   26   27   28   29   30   31   32   33   34   35