Page 33 - Handbook Of Integral Equations
P. 33

x
                         y(t) dt
               40.       √       = f(x).
                            2
                      a   x – t 2
                                 2 d     x  tf(t) dt
                     Solution: y =       √       .
                                 π dx       2   2
                                       a   x – t
                     •
                       Reference: P. P. Zabreyko, A. I. Koshelev, et al. (1975).
                         x  y(t) dt
               41.       √          = f(x),   a >0,   a + b >0.
                             2
                      0   ax + bt 2
                                                                n
                     1 . For a polynomial right-hand side, f(x)=  N    A n x , the solution has the form
                      ◦
                                                         n=0
                                              N                    1  n
                                                 A n  n              t dt
                                        y(x)=       x ,    B n =   √       .
                                                 B n             0   a + bt 2
                                              n=0

                                          n
                     2 .For f(x)= x λ  N    A n x , where λ is an arbitrary number (λ > –1), the solution has the
                      ◦
                                    n=0
                     form
                                               N                    1  λ+n
                                                  A n  n             t   dt
                                             λ
                                      y(x)= x        x ,    B n =    √      .
                                                  B n             0   a + bt 2
                                               n=0

                                    	 N
                     3 .For f(x)=ln x   A n x n  , the solution has the form
                      ◦
                                      n=0
                               N          N                      1  n              1  n
                                                                   t dt              t ln t
                                  A n  n    A n C n  n
                     y(x)=ln x       x –       2  x ,    B n =   √       ,  C n =   √      dt.
                                  B n         B n              0   a + bt 2      0   a + bt 2
                              n=0        n=0
                                           n
                                  N
                      ◦
                     4 .For f(x)=   A n ln x) , the solution of the equation has the form
                                 n=0
                                                        N

                                                 y(x)=    A n Y n (x),
                                                       n=0
                     where the functions Y n = Y n (x) are given by
                                             n     λ                   1  λ
                                            d    x                       z dz
                                   Y n (x)=               ,    I(λ)=    √      .
                                            dλ n  I(λ)                   a + bz 2
                                                       λ=0           0
                     5 .For f(x)=  N    A n cos(λ n ln x)+  N    B n sin(λ n ln x), the solution of the equation has the
                      ◦
                                 n=1              n=1
                     form
                                            N                 N

                                      y(x)=    C n cos(λ n ln x)+  D n sin(λ n ln x),
                                            n=1              n=1
                     where the constants C n and D n are found by the method of undetermined coefficients.




                 © 1998 by CRC Press LLC









                © 1998 by CRC Press LLC
                                                                                                             Page 11
   28   29   30   31   32   33   34   35   36   37   38