Page 31 - Handbook Of Integral Equations
P. 31

x
                           y(t) dt
               29.                  = f(x),   a >0,   a + b >0,  m =1, 2, ...
                         ax m  + bt m
                      0
                                                                n
                     1 . For a polynomial right-hand side, f(x)=  N    A n x , the solution has the form
                      ◦
                                                         n=0
                                            N                       1
                                               A n  m+n–1
                                                                     t m+n–1  dt
                                      y(x)=       x     ,    B n =        m  .
                                               B n                 0  a + bt
                                            n=0
                                          n
                      ◦
                     2 .For f(x)= x λ  N    A n x , where λ is an arbitrary number (λ > –1), the solution has the
                                    n=0
                     form
                                             N                       1  t λ+m+n–1  dt
                                    y(x)= x λ     A n  x m+n–1 ,  B n =    m   .
                                               B n                 0   a + bt
                                            n=0

                     3 .For f(x)=ln x   A n x n  , the solution has the form
                                    	 N
                      ◦
                                      n=0
                                                N             N

                                                   A n  m+n–1    A n C n  m+n–1
                                      y(x)=ln x       x     –       2  x    ,
                                                   B n            B n
                                               n=0            n=0
                                              1  m+n–1           1  m+n–1
                                               t    dt           t     ln t
                                      B n =         m  ,  C n =        m  dt.
                                            0  a + bt          0   a + bt
                 1.1-6. Kernels Containing Square Roots

                       x

                        √
               30.        x – ty(t) dt = f(x).
                      a
                     Differentiating with respect to x, we arrive at Abel’s equation 1.1.36:
                                                   x
                                                    y(t) dt


                                                    √      =2f (x).
                                                              x
                                                  a   x – t
                        Solution:
                                                     2 d 2     x  f(t) dt
                                               y(x)=          √     .
                                                     π dx 2     x – t
                                                           a
                         x
                         √    √
               31.         x –  t y(t) dt = f(x).
                      a
                                                             1
                     This is a special case of equation 1.1.44 with µ = .
                                                             2
                                        d  √

                        Solution: y(x)=2     xf (x) .
                                               x
                                        dx
                       x

                          √       √
               32.       A x + B    t y(t) dt = f(x).
                      a
                                                             1
                     This is a special case of equation 1.1.45 with µ = .
                                                             2
                 © 1998 by CRC Press LLC








                © 1998 by CRC Press LLC
                                                                                                             Page 9
   26   27   28   29   30   31   32   33   34   35   36