Page 34 - Handbook Of Integral Equations
P. 34

1.1-7. Kernels Containing Arbitrary Powers

                       x

                             λ
               42.      (x – t) y(t) dt = f(x),  f(a)=0,  0< λ <1.
                      a
                     Differentiating with respect to x, we arrive at the generalized Abel equation 1.1.46:
                                                    y(t) dt  1
                                                  x
                                                           =   f (x).

                                                                x
                                                   (x – t) 1–λ  λ
                                                a
                        Solution:
                                               d 2     x  f(t) dt    sin(πλ)
                                       y(x)= k              ,    k =       .
                                              dx 2  a  (x – t) λ       πλ
                     •
                       Reference: F. D. Gakhov (1977).
                         x
                             µ
               43.      (x – t) y(t) dt = f(x).
                      a
                     For µ =0, 1, 2, ... , see equations 1.1.1, 1.1.2, 1.1.4, 1.1.12, and 1.1.23. For –1< µ < 0, see
                     equation 1.1.42.
                        Set µ = n – λ, where n =1, 2, ... and 0 ≤ λ < 1, and f(a)= f (a)= ··· = f x (n–1) (a)=0.

                                                                         x
                        On differentiating the equation n times, we arrive at an equation of the form 1.1.46:
                                             x
                                               y(t) dτ  Γ(µ – n +1)  (n)

                                                      =           f x  (x),
                                               (x – t) λ  Γ(µ +1)
                                            a
                     where Γ(µ) is the gamma function.
                                         β
                        Example. Set f(x)= Ax , where β ≥ 0, and let µ > –1 and µ – β ≠ 0, 1, 2, ... In this case, the solution has
                                  A Γ(β +1)
                     the form y(x)=         x β–µ–1 .
                                Γ(µ +1) Γ(β – µ)
                     •
                       Reference: M. L. Krasnov, A. I. Kisilev, and G. I. Makarenko (1971).
                       x

                              µ
                          µ
               44.      (x – t )y(t) dt = f(x).
                      a
                                                               µ
                     This is a special case of equation 1.9.2 with g(x)= x .
                                       1
                        Solution: y(x)=  x 1–µ   x
                                             f (x) .
                                       µ          x
                       x

                            µ     µ
               45.       Ax + Bt    y(t) dt = f(x).
                      a
                                                                                          µ
                     For B = –A, see equation 1.1.44. This is a special case of equation 1.9.4 with g(x)= x .
                                         1   d     –  Aµ     x  –  Bµ

                        Solution: y(x)=         x A+B     t A+B f (t) dt .
                                                                t
                                       A + B dx         a
                       x
                         y(t) dt
               46.              = f(x),    0 < λ <1.
                      a (x – t) λ
                     The generalized Abel equation.
                        Solution:
                                 sin(πλ) d     x  f(t) dt  sin(πλ)     f(a)     x  f (t) dt

                                                                                t
                           y(x)=                       =                 +             .
                                    π   dx  a  (x – t) 1–λ  π    (x – a) 1–λ  a  (x – t) 1–λ
                     •
                       Reference: E. T. Whittacker and G. N. Watson (1958).
                 © 1998 by CRC Press LLC







                © 1998 by CRC Press LLC
                                                                                                             Page 12
   29   30   31   32   33   34   35   36   37   38   39