Page 29 - Handbook Of Integral Equations
P. 29

1.1-5. Kernels Containing Rational Functions

                         x  y(t) dt
               26.             = f(x).
                      0  x + t
                                                                n
                     1 . For a polynomial right-hand side, f(x)=  N    A n x , the solution has the form
                      ◦
                                                         n=0
                                          N                            n     k
                                            A n  n             n
                                                                          (–1)
                                   y(x)=       x ,    B n =(–1)  ln 2 +        .
                                            B n                            k
                                         n=0                          k=1
                                          n
                     2 .For f(x)= x λ  N    A n x , where λ is an arbitrary number (λ > –1), the solution has the
                      ◦
                                    n=0
                     form
                                                N                    1  t λ+n  dt
                                                       n
                                       y(x)= x λ     A n  x ,  B n =       .
                                                   B n             0  1+ t
                                                n=0

                                    	 N
                     3 .For f(x)=ln x   A n x n  , the solution has the form
                      ◦
                                      n=0
                                                    N          N
                                                       A n  n    A n I n  n

                                          y(x)=ln x       x +       2  x ,
                                                       B n        B n
                                                   n=0        n=0
                                                n                          n
                                                      k                2        k
                                        n          (–1)            n  π      (–1)
                                B n =(–1)  ln 2 +       ,  I n =(–1)    +          .
                                                    k                12       k 2
                                               k=1                        k=1
                                           n
                     4 .For f(x)=   A n ln x) , the solution of the equation has the form
                      ◦
                                  N
                                 n=0
                                                        N

                                                 y(x)=    A n Y n (x),
                                                       n=0
                     where the functions Y n = Y n (x) are given by
                                              d    x                     z dz
                                               n     λ                   1  λ
                                    Y n (x)=               ,    I(λ)=         .
                                             dλ n  I(λ)                  1+ z
                                                         λ=0           0
                     5 .For f(x)=  N    A n cos(λ n ln x)+  N    B n sin(λ n ln x), the solution of the equation has the
                      ◦
                                 n=1              n=1
                     form
                                            N                 N

                                      y(x)=    C n cos(λ n ln x)+  D n sin(λ n ln x),
                                            n=1              n=1
                     where the constants C n and D n are found by the method of undetermined coefficients.
                     6 . For arbitrary f(x), the transformation
                      ◦
                                      1 2z
                                                            –τ
                                                                            –z
                                                1 2τ
                                  x = e ,   t = e ,   y(t)= e w(τ),  f(x)= e g(z)
                                      2         2
                     leads to an integral equation with difference kernel of the form 1.9.26:
                                                   z
                                                     w(τ) dτ
                                                              = g(z).
                                                    cosh(z – τ)
                                                 –∞
                 © 1998 by CRC Press LLC







                © 1998 by CRC Press LLC
                                                                                                             Page 7
   24   25   26   27   28   29   30   31   32   33   34