Page 38 - Handbook Of Integral Equations
P. 38

x

                            λx     λt
               8.        Ae   + Be    y(t) dt = f(x).
                      a
                                                                                         λx
                     For B = –A, see equation 1.2.6. This is a special case of equation 1.9.4 with g(x)= e .
                                         1   d     	   Aλ   
     x  	  Bλ

                        Solution: y(x)=         exp –      x     exp –      t f (t) dt .
                                                                               t
                                       A + B dx      A + B     a      A + B
                         x
                            λx     λt
               9.        Ae   + Be   + C y(t) dt = f(x).
                      a
                                                               λx
                     This is a special case of equation 1.9.5 with g(x)= e .
                       x

                            λx     µt
               10.       Ae   + Be    y(t) dt = f(x).
                      a
                     For λ = µ, see equation 1.2.8. This is a special case of equation 1.9.6 with g(x)= Ae λx  and
                             µt
                     h(t)= Be .
                       x

                           λ(x–t)  µ(x–t)

               11.       e     – e     y(t) dt = f(x),  f(a)= f (a)=0.
                                                               x
                      a
                     Solution:
                                            1
                                    y(x)=       f xx  – (λ + µ)f + λµf ,  f = f(x).
                                                           x
                                          λ – µ
                         x
                           λ(x–t)    µ(x–t)
               12.       Ae     + Be      y(t) dt = f(x).
                      a
                                                                                            λx
                     For B = –A, see equation 1.2.11. This is a special case of equation 1.9.15 with g 1 (x)= Ae ,
                                        µx
                     h 1 (t)= e –λt , g 2 (x)= Be , and h 2 (t)= e –µt .
                        Solution:
                                                    x
                               e λx  d     (µ–λ)x      f(t)       dt             B(λ – µ)
                        y(x)=           e     Φ(x)               ,    Φ(x)=exp          x .
                              A + B dx             a   e µt  t  Φ(t)              A + B
                       x

                           λ(x–t)    µ(x–t)
               13.       Ae     + Be      + C y(t) dt = f(x).
                      a
                     This is a special case of equation 1.2.14 with β =0.
                         x
                           λ(x–t)    µ(x–t)    β(x–t)
               14.       Ae     + Be      + Ce      y(t) dt = f(x).
                      a
                     Differentiating the equation with respect to x yields
                                             x

                                                  λ(x–t)    µ(x–t)    β(x–t)

                           (A + B + C)y(x)+    Aλe     + Bµe     + Cβe     y(t) dt = f (x).
                                                                                    x
                                            a
                     Eliminating the term with e β(x–t)  with the aid of the original equation, we arrive at an equation
                     of the form 2.2.10:
                                          x

                                                    λ(x–t)        µ(x–t)

                         (A + B + C)y(x)+   A(λ – β)e    + B(µ – β)e   y(t) dt = f (x) – βf(x).
                                                                                x
                                         a
                     In the special case A + B + C = 0, this is an equation of the form 1.2.12.

                 © 1998 by CRC Press LLC









                © 1998 by CRC Press LLC
                                                                                                             Page 16
   33   34   35   36   37   38   39   40   41   42   43