Page 40 - Handbook Of Integral Equations
P. 40

x

                           λx  µx    µt     βx  γx    γt
               23.       Ae   (e  – e )+ Be    (e  – e ) y(t) dt = f(x).
                      a
                                                                                        βx
                                                                             µt
                                                                  λx
                     This is a special case of equation 1.9.45 with g 1 (x)= Ae , h 1 (t)= –e , g 2 (x)= Be , and
                             γt
                     h 1 (t)= –e .
                       x


               24.       A exp(λx + µt)+ B exp[(λ + β)x +(µ – β)t]
                      a

                                                   – (A + B) exp[(λ + γ)x +(µ – γ)t] y(t) dt = f(x).
                                                                λx
                     This is a special case of equation 1.9.47 with g 1 (x)= e .
                       x


                           λx  λt n
               25.       e   – e   y(t) dt = f(x),  n =1, 2, ...
                      a
                     Solution:
                                                   1  λx  	  1  d  
 n+1
                                           y(x)=      e             f(x).
                                                  n
                                                 λ n!     e λx  dx
                       x √

               26.        e λx  – e λt  y(t) dt = f(x),  λ >0.
                      a
                     Solution:                                 x
                                                                  λt
                                               2  λx  	  –λx  d  
 2     e f(t) dt
                                        y(x)=   e   e            √        .
                                               π        dx         λx   λt
                                                              a   e   – e
                       x
                           y(t) dt

               27.       √          = f(x),   λ >0.
                      a   e λx  – e λt
                     Solution:
                                                             λt
                                                   λ d     x  e f(t) dt
                                             y(x)=          √        .
                                                   π dx       λx   λt
                                                         a   e   – e
                       x

                               λt µ
               28.      (e λx  – e ) y(t) dt = f(x),  λ >0,  0< µ <1.
                      a
                     Solution:
                                                d        e f(t) dt         sin(πµ)
                                           	      
 2     x  λt
                                         λx
                                             –λx
                                 y(x)= ke   e                     ,    k =       .
                                                               λt µ
                                                dx    a  (e λx  – e )        πµ
                         x  y(t) dt
               29.                  = f(x),    λ >0,   0< µ <1.
                                λt µ
                      a (e λx  – e )
                     Solution:
                                                                λt
                                               λ sin(πµ) d     x  e f(t) dt
                                         y(x)=                           .
                                                                    λt 1–µ
                                                  π    dx  a  (e λx  – e )
                 1.2-2. Kernels Containing Power-Law and Exponential Functions
                       x

                                     λ(x–t)
               30.       A(x – t)+ Be     y(t) dt = f(x).
                      a
                     Differentiating with respect to x, we arrive at an equation of the form 2.2.4:
                                                  x
                                                          λ(x–t)
                                        By(x)+     A + Bλe     y(t) dt = f (x).
                                                                       x
                                                a
                 © 1998 by CRC Press LLC



                © 1998 by CRC Press LLC
                                                                                                             Page 18
   35   36   37   38   39   40   41   42   43   44   45