Page 45 - Handbook Of Integral Equations
P. 45

x


               7.        A cosh(λx)+ B cosh(µt)+ C y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.6 with g(x)= A cosh(λx) and h(t)= B cosh(µt)+ C.
                       x


               8.        A 1 cosh[λ 1 (x – t)] + A 2 cosh[λ 2 (x – t)] y(t) dt = f(x).
                      a
                     The equation is equivalent to the equation
                                    x


                                      B 1 sinh[λ 1 (x – t)] + B 2 sinh[λ 2 (x – t)] y(t) dt = F(x),
                                   a
                                                                    x

                                            A 1        A 2
                                       B 1 =   ,  B 2 =  ,  F(x)=     f(t) dt,
                                            λ 1        λ 2         a
                     of the form 1.3.41. (Differentiating this equation yields the original equation.)
                         x
                            2
               9.       cosh [λ(x – t)]y(t) dt = f(x).
                      a
                     Differentiation yields an equation of the form 2.3.16:
                                                  x

                                        y(x)+ λ    sinh[2λ(x – t)]y(t) dt = f (x).
                                                                       x
                                                a
                        Solution:
                                          2λ 2     x                              √


                              y(x)= f (x) –      sinh[k(x – t)]f (t) dt,  where k = λ 2.
                                    x                        t
                                           k   a
                         x
                            2          2

               10.       cosh (λx) – cosh (λt) y(t) dt = f(x),  f(a)= f (a)=0.
                                                                     x
                      a
                                   1 d     f (x)

                                            x
                     Solution: y(x)=              .
                                   λ dx sinh(2λx)
                         x
                               2           2
               11.       A cosh (λx)+ B cosh (λt) y(t) dt = f(x).
                      a
                                                                                         2
                     For B =–A, see equation 1.3.10. This is a special case of equation 1.9.4 with g(x)=cosh (λx).
                        Solution:
                                                         2A     x         2B
                                      1    d            –                –

                              y(x)=            cosh(λx)  A+B    cosh(λt)  A+B  f (t) dt .
                                                                              t
                                    A + B dx
                                                             a
                       x

                               2           2
               12.       A cosh (λx)+ B cosh (µt)+ C y(t) dt = f(x).
                      a
                                                                   2
                                                                                      2
                     This is a special case of equation 1.9.6 with g(x)= A cosh (λx), and h(t)= B cosh (µt)+ C.
                       x

               13.      cosh[λ(x – t)] cosh[λ(x + t)]y(t) dt = f(x).
                      a
                     Using the formula
                                                   1
                              cosh(α – β) cosh(α + β)= [cos(2α) + cos(2β)],  α = λx,  β = λt,
                                                   2
                     we transform the original equation to an equation of the form 1.4.6 with A = B =1:
                                           x
                                           [cosh(2λx) + cosh(2λt)]y(t) dt =2f(x).
                                         a
                        Solution:                             x
                                              d       1           f (t) dt

                                                                   t
                                        y(x)=     √             √          .
                                              dx   cosh(2λx)  a   cosh(2λt)
                 © 1998 by CRC Press LLC
                © 1998 by CRC Press LLC
                                                                                                             Page 23
   40   41   42   43   44   45   46   47   48   49   50