Page 47 - Handbook Of Integral Equations
P. 47

x
                         √
               21.        cosh x – cosh ty(t) dt = f(x).
                      a
                     Solution:
                                          2      	  1    d  
 2     x  sinh tf(t) dt
                                    y(x)=   sinh x               √            .
                                          π        sinh x dx
                                                              a   cosh x – cosh t
                       x
                             y(t) dt
               22.       √              = f(x).
                      a   cosh x – cosh t
                     Solution:                           x
                                                 1 d       sinh tf(t) dt
                                           y(x)=          √            .
                                                 π dx  a   cosh x – cosh t
                       x

                                      λ
               23.      (cosh x – cosh t) y(t) dt = f(x),  0 < λ <1.
                      a
                     Solution:
                                            1   d         sinh tf(t) dt        sin(πλ)
                                         	        
 2     x
                             y(x)= k sinh x                            ,    k =       .
                                          sinh x dx   a  (cosh x – cosh t) λ     πλ
                       x

                            µ
                                     µ
               24.      (cosh x – cosh t)y(t) dt = f(x).
                      a
                                                                 µ
                     This is a special case of equation 1.9.2 with g(x) = cosh x.

                                       1 d      f (x)

                                                 x
                        Solution: y(x)=              µ–1  .
                                       µ dx sinh x cosh  x
                         x
                               µ          µ
               25.       A cosh x + B cosh t y(t) dt = f(x).
                      a
                                                                                           µ
                     For B = –A, see equation 1.3.24. This is a special case of equation 1.9.4 with g(x) = cosh x.
                        Solution:
                                                         Aµ     x         Bµ
                                      1    d            –                –

                              y(x)=            cosh(λx)  A+B    cosh(λt)  A+B  f (t) dt .
                                                                              t
                                    A + B dx
                                                             a
                       x
                             y(t) dt
               26.                      = f(x),    0 < λ <1.
                      a (cosh x – cosh t) λ
                     Solution:                            x
                                              sin(πλ) d       sinh tf(t) dt
                                        y(x)=                              .
                                                π   dx  a  (cosh x – cosh t) 1–λ
                         x
               27.      (x – t) cosh[λ(x – t)]y(t) dt = f(x),  f(a)= f (a)=0.

                                                                  x
                      a
                     Differentiating the equation twice yields
                                    x                       x

                         y(x)+2λ     sinh[λ(x – t)]y(t) dt + λ 2  (x – t) cosh[λ(x – t)]y(t) dt = f (x).
                                                                                     xx
                                  a                       a
                     Eliminating the third term on the right-hand side with the aid of the original equation, we
                     arrive at an equation of the form 2.3.16:
                                               x
                                                                          2

                                    y(x)+2λ    sinh[λ(x – t)]y(t) dt = f (x) – λ f(x).
                                                                   xx
                                             a
                 © 1998 by CRC Press LLC







                © 1998 by CRC Press LLC
                                                                                                             Page 25
   42   43   44   45   46   47   48   49   50   51   52