Page 51 - Handbook Of Integral Equations
P. 51

x


               42.       A sinh[λ(x – t)] + B sinh[µ(x – t)] + C sinh[β(x – t)] y(t) dt = f(x).
                      a
                     It assumed that f(a)= f (a) = 0. Differentiating the integral equation twice yields

                                        x
                                          x

                                               2               2
                     (Aλ + Bµ + Cβ)y(x)+    Aλ sinh[λ(x – t)] + Bµ sinh[µ(x – t)] y(t) dt
                                         a
                                                                      x

                                                             + Cβ 2   sinh[β(x – t)]y(t) dt = f (x).
                                                                                         xx
                                                                    a
                     Eliminating the last integral with the aid of the original equation, we arrive at an equation of
                     the form 2.3.18:
                     (Aλ + Bµ + Cβ)y(x)
                             x
                                  2   2                 2   2                            2
                         +    A(λ – β ) sinh[λ(x – t)] + B(µ – β ) sinh[µ(x – t)] y(t) dt = f (x) – β f(x).
                                                                                  xx
                           a
                     In the special case Aλ + Bµ + Cβ = 0, this is an equation of the form 1.3.41.
                       x

                            2
               43.      sinh [λ(x – t)]y(t) dt = f(x),  f(a)= f (a)= f  (a)=0.
                                                             x       xx
                      a
                     Differentiating yields an equation of the form 1.3.34:
                                              x                   1

                                              sinh[2λ(x – t)]y(t) dt =  f (x).
                                                                    x
                                            a                     λ
                                       1
                                         –2

                        Solution: y(x)= λ f   (x) – 2f (x).
                                       2   xxx      x
                       x

                            2          2
               44.       sinh (λx) – sinh (λt) y(t) dt = f(x),  f(a)= f (a)=0.

                                                                    x
                      a
                                   1 d     f (x)

                                            x
                     Solution: y(x)=              .
                                   λ dx sinh(2λx)
                         x
                              2            2
               45.       A sinh (λx)+ B sinh (λt) y(t) dt = f(x).
                      a
                                                                                         2
                     For B = –A, see equation 1.3.44. This is a special case of equation 1.9.4 with g(x) = sinh (λx).
                        Solution:
                                       1   d            –  2A     x       –  2B

                              y(x)=            sinh(λx)  A+B    sinh(λt)  A+B  f (t) dt .
                                                                              t
                                     A + B dx
                                                             a
                         x
                              2            2
               46.       A sinh (λx)+ B sinh (µt) y(t) dt = f(x).
                      a
                                                                   2
                                                                                      2
                     This is a special case of equation 1.9.6 with g(x)= A sinh (λx) and h(t)= B sinh (µt).
                       x

               47.      sinh[λ(x – t)] sinh[λ(x + t)]y(t) dt = f(x).
                      a
                     Using the formula
                                                  1
                             sinh(α – β) sinh(α + β)= [cosh(2α) – cosh(2β)],  α = λx,  β = λt,
                                                  2
                     we reduce the original equation to an equation of the form 1.3.5:
                                           x
                                           [cosh(2λx) – cosh(2λt)]y(t) dt =2f(x).
                                         a
                                       1 d     f (x)

                                               x
                        Solution: y(x)=               .
                                       λ dx sinh(2λx)
                 © 1998 by CRC Press LLC
                © 1998 by CRC Press LLC
                                                                                                             Page 29
   46   47   48   49   50   51   52   53   54   55   56