Page 62 - Handbook Of Integral Equations
P. 62

x

                           2       2

               6.        ln (λx) – ln (λt) y(t) dt = f(x),  f(a)= f (a)=0.
                                                                x
                      a

                                    d   xf (x)

                                          x
                     Solution: y(x)=           .
                                   dx 2 ln(λx)
                       x

                            2          2
               7.        A ln (λx)+ B ln (λt) y(t) dt = f(x).
                      a
                                                                                         2
                     For B = –A, see equation 1.4.7. This is a special case of equation 1.9.4 with g(x)=ln (λx).
                        Solution:
                                         1   d          –  2A     x       –  2B

                                 y(x)=             ln(λx)   A+B    ln(λt)   A+B  f (t) dt .
                                                                           t
                                       A + B dx
                                                             a
                         x
                            2          2
               8.        A ln (λx)+ B ln (µt)+ C y(t) dt = f(x).
                      a
                                                                              2
                                                               2
                     This is a special case of equation 1.9.6 with g(x)=ln (λx) and h(t)=ln (µt)+ C.
                       x

                                 n
               9.        ln(x/t)  y(t) dt = f(x),  n =1, 2, ...
                      a
                     The right-hand side of the equation is assumed to satisfy the conditions f(a)= f (a)= ··· =

                                                                                     x
                     f (n) (a)=0.
                      x
                                                  n+1
                                        1     d
                        Solution: y(x)=     x       f(x).
                                       n! x  dx
                       x

                           2     2  
 n
               10.       ln x – ln t  y(t) dt = f(x),  n =1, 2, ...
                      a
                     The right-hand side of the equation is assumed to satisfy the conditions f(a)= f (a)= ··· =

                                                                                     x
                     f x (n) (a)=0.
                                                      n+1


                                        ln x   x  d
                        Solution: y(x)=                 f(x).
                                        n
                                       2 n! x  ln x dx
                       x
                            x + b
               11.      ln        y(t) dt = f(x).
                      a     t + b
                     This is a special case of equation 1.9.2 with g(x) = ln(x + b).


                        Solution: y(x)=(x + b)f (x)+ f (x).
                                            xx      x
                       x


               12.        ln(x/t) y(t) dt = f(x).
                      a
                     Solution:
                                                          2
                                                              x
                                                 2     d        f(t) dt
                                           y(x)=     x                  .
                                                 πx   dx    a t   ln(x/t)
                       x
                          y(t) dt

               13.                = f(x).
                      a    ln(x/t)
                     Solution:                            x
                                                    1 d       f(t) dt
                                              y(x)=                  .
                                                    π dx  a t  ln(x/t)
                 © 1998 by CRC Press LLC
                © 1998 by CRC Press LLC
                                                                                                             Page 40
   57   58   59   60   61   62   63   64   65   66   67