Page 61 - Handbook Of Integral Equations
P. 61

1.4. Equations Whose Kernels Contain Logarithmic
                      Functions

                 1.4-1. Kernels Containing Logarithmic Functions


                         x
               1.       (ln x – ln t)y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.2 with g(x)=ln x.
                        Solution: y(x)= xf (x)+ f (x).


                                        xx
                                                x
                       x

               2.       ln(x – t)y(t) dt = f(x).
                      0
                     Solution:
                                       x
                                                                             z –Cz
                                                         z –Cz
                                                  ∞  (x – t) e           ∞  x e
                              y(x)= –    f (t) dt             dz – f (0)          dz,


                                          tt                       x
                                      0          0   Γ(z +1)            0  Γ(z +1)
                                       1        1

                     where C = lim 1+   + ··· +     – ln k = 0.5772 ... is the Euler constant and Γ(z)is
                              k→∞      2       k +1
                     the gamma function.
                     •
                       References: M. L. Krasnov, A. I. Kisilev, and G. I. Makarenko (1971), A. G. Butkovskii (1979).
                         x
               3.       [ln(x – t)+ A]y(t) dt = f(x).
                      a
                     Solution:
                                         x                               ∞  z (A–C)z

                                     d                              d      x e
                             y(x)= –       ν A (x – t)f(t) dt,  ν A (x)=           dz,
                                    dx                             dx      Γ(z +1)
                                        a                              0
                     where C = 0.5772 ... is the Euler constant and Γ(z) is the gamma function.
                        For a = 0, the solution can be written in the form
                                      x
                                                       z (A–C)z
                                                                             z (A–C)z
                                                 ∞  (x – t) e             ∞  x e
                             y(x)= –   f (t) dt               dz – f (0)            dz,


                                        tt                         x
                                     0         0     Γ(z +1)            0   Γ(z +1)
                     •
                       Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).
                       x

               4.       (A ln x + B ln t)y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.4 with g(x)=ln x.For B = –A, see equation 1.4.1.
                        Solution:
                                        sign(ln x) d         –  A     x      –  B

                                 y(x)=                ln x   A+B    ln t   A+B  f (t) dt .
                                                                           t
                                         A + B  dx             a
                       x

               5.       (A ln x + B ln t + C)y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.5 with g(x)= x.

                 © 1998 by CRC Press LLC









                © 1998 by CRC Press LLC
                                                                                                             Page 39
   56   57   58   59   60   61   62   63   64   65   66