Page 120 - Handbook Of Integral Equations
P. 120

3 .For f(x)=  n    A k exp(λ k x), the solution has the form
                      ◦
                                 k=0
                                        n
                                                                ∞
                                          A k

                                 y(x)=       exp(λ k x),  B k =   K(z) exp(–λ k z) dz.
                                          B k                  0
                                       k=0
                                              k
                      ◦
                     4 .For f(x) = cos(λx)  n    A k x , the solution has the form
                                        k=0
                                                    n                n
                                                          k               k
                                       y(x) = cos(λx)  B k x + sin(λx)  C k x ,
                                                    k=0             k=0
                     where the constants B k and C k are found by the method of undetermined coefficients.

                                              k
                     5 .For f(x) = sin(λx)  n    A k x , the solution has the form
                      ◦
                                       k=0
                                                    n                n
                                                          k               k
                                       y(x) = cos(λx)  B k x + sin(λx)  C k x ,
                                                    k=0             k=0
                     where the constants B k and C k are found by the method of undetermined coefficients.
                      ◦
                     6 .For f(x)=  n    A k cos(λ k x), the solution has the form
                                 k=0
                                           n
                                                A k
                                    y(x)=              B ck cos(λ k x) – B sk sin(λ k x) ,
                                             B 2  + B 2
                                          k=0  ck   sk
                                        ∞                         ∞

                                 B ck =   K(z) cos(λ k z) dz,  B sk =  K(z) sin(λ k z) dz.
                                       0                         0
                      ◦
                     7 .For f(x)=  n    A k sin(λ k x), the solution has the form
                                 k=0
                                           n
                                                A k
                                    y(x)=              B ck sin(λ k x)+ B sk cos(λ k x) ,
                                             B 2  + B 2
                                          k=0  ck   sk
                                        ∞                         ∞

                                 B ck =   K(z) cos(λ k z) dz,  B sk =  K(z) sin(λ k z) dz.
                                       0                         0
                       ∞

                                            n
               27.       K(x – t)y(t) dt = Ax ,   n =0, 1, 2, ...
                      x
                     This is a special case of equation 1.9.29 with λ =0.
                     1 . Solution with n =0:
                      ◦
                                                 A             ∞
                                           y(x)=   ,    B =     K(–z) dz.
                                                 B
                                                             0
                     2 . Solution with n =1:
                      ◦
                                    A     AC             ∞                 ∞
                              y(x)=   x –    ,    B =     K(–z) dz,  C =    zK(–z) dz.
                                    B     B 2
                                                       0                 0


                 © 1998 by CRC Press LLC









                © 1998 by CRC Press LLC
                                                                                                             Page 98
   115   116   117   118   119   120   121   122   123   124   125