Page 124 - Handbook Of Integral Equations
P. 124

1.9-3. Other Equations

                       x

                                    n
               37.       g(x) – g(t)  y(t) dt = f(x),  n =1, 2, ...
                      a

                     The right-hand side of the equation is assumed to satisfy the conditions f(a)= f (a)= ··· =
                                                                                     x
                     f x (n) (a)=0.
                                                        n+1


                                       1         1   d
                        Solution: y(x)=  g (x)             f(x).

                                          x
                                       n!      g (x) dx

                                                x
                         x

               38.        g(x) – g(t) y(t) dt = f(x),  f(a)=0.
                      a
                     Solution:
                                                             2  x



                                            2         1   d       f(t)g (t) dt
                                                                      t

                                      y(x)=   g (x)               √         .
                                               x
                                            π       g (x) dx   a   g(x) – g(t)

                                                     x
                         x  y(t) dt

               39.       √           = f(x),   g >0.
                                                x
                      a   g(x) – g(t)
                     Solution:
                                                   1 d     x  f(t)g (t) dt

                                                                t
                                             y(x)=         √          .
                                                   π dx  a   g(x) – g(t)
                       x
                         e    y(t) dt
                          λ(x–t)

               40.       √           = f(x),    g >0.
                                                 x
                      a    g(x) – g(t)
                     Solution:

                                                1  λx  d     x  e –λt f(t)g (t)
                                                                   t
                                          y(x)=   e         √         dt.
                                                π    dx  a   g(x) – g(t)
                       x

                                  λ
               41.      [g(x) – g(t)] y(t) dt = f(x),  f(a)=0,  0< λ <1.
                      a
                     Solution:
                                                     2
                                                         x
                                              1   d       g (t)f(t) dt       sin(πλ)

                                                           t

                               y(x)= kg (x)                          ,    k =       .
                                       x
                                            g (x) dx      [g(x) – g(t)] λ      πλ

                                             x         a
                       x
                          h(t)y(t) dt


               42.                   = f(x),    g >0,   0< λ <1.
                                                 x
                      a [g(x) – g(t)] λ
                     Solution:
                                               sin(πλ) d     x  f(t)g (t) dt

                                                                  t
                                         y(x)=                           .
                                                πh(x) dx  a  [g(x) – g(t)] 1–λ
                       x
                            t
                                                 µ
                                           λ
               43.      K      y(t) dt = Ax + Bx .
                            x
                      0
                     Solution:
                                A  λ–1  B   µ–1           1    λ–1            1     µ–1
                          y(x)=   x   +    x  ,    I λ =  K(z)z   dz,  I µ =  K(z)z   dz.
                                I λ     I µ             0                   0
                 © 1998 by CRC Press LLC
                © 1998 by CRC Press LLC
                                                                                                             Page 102
   119   120   121   122   123   124   125   126   127   128   129