Page 119 - Handbook Of Integral Equations
P. 119

x

               23.       K(x – t)y(t) dt = A sin(λx).
                      –∞
                     Solution:

                                                 A
                                        y(x)=         B c sin(λx)+ B s cos(λx) ,
                                                2
                                              B + B 2 s
                                                c
                                         ∞                       ∞

                                  B c =    K(z) cos(λz) dz,  B s =  K(z) sin(λz) dz.
                                        0                       0
                         x
               24.       K(x – t)y(t) dt = Ae µx  cos(λx).
                      –∞
                     Solution:

                                               A     µx
                                       y(x)=        e   B c cos(λx) – B s sin(λx) ,
                                             B + B 2
                                              2
                                              c    s

                                     ∞                           ∞
                               B c =   K(z)e –µz  cos(λz) dz,  B s =  K(z)e –µz  sin(λz) dz.
                                     0                          0
                         x
               25.       K(x – t)y(t) dt = Ae µx  sin(λx).
                      –∞
                     Solution:
                                               A     µx
                                       y(x)=        e   B c sin(λx)+ B s cos(λx) ,
                                              2
                                             B + B s 2
                                              c
                                     ∞                           ∞

                               B c =   K(z)e –µz  cos(λz) dz,  B s =  K(z)e –µz  sin(λz) dz.
                                     0                          0
                       x

               26.       K(x – t)y(t) dt = f(x).
                      –∞
                                                                             k
                      ◦
                     1 . For a polynomial right-hand side of the equation, f(x)=  n    A k x , the solution has the
                                                                      k=0
                     form
                                                         n
                                                               k
                                                  y(x)=    B k x ,
                                                        k=0
                     where the constants B k are found by the method of undetermined coefficients. The solution
                                                                    ◦
                     can also be obtained by the formula given in 1.9.17 (item 4 ).
                                           k
                     2 .For f(x)= e λx  n    A k x , the solution has the form
                      ◦
                                    k=0
                                                           n
                                                                 k
                                                 y(x)= e λx     B k x ,
                                                          k=0

                     where the constants B k are found by the method of undetermined coefficients. The solution
                                                                    ◦
                     can also be obtained by the formula given in 1.9.19 (item 3 ).



                 © 1998 by CRC Press LLC









                © 1998 by CRC Press LLC
                                                                                                             Page 97
   114   115   116   117   118   119   120   121   122   123   124