Page 134 - Handbook Of Integral Equations
P. 134

x

                                   2  3
               28.   y(x)+ A    x t – t y(t) dt = f(x).
                              a
                                               2
                                         2
                     The transformation z = x , τ = t , y(x)= w(z) leads to an equation of the form 2.1.4:
                                              z

                                         1
                                   w(z)+ A     (z – τ)w(τ) dτ = F(z),  F(z)= f(x).
                                         2
                                             a 2
                             x

                                  2     3
               29.   y(x)+     Ax t + Bt y(t) dt = f(x).
                            a
                                               2
                                         2
                     The transformation z = x , τ = t , y(x)= w(z) leads to an equation of the form 2.1.6:
                                         z

                                             1   1
                                 w(z)+      Az + Bτ w(τ) dτ = F(z),    F(z)= f(x).
                                           2     2
                                        a 2
                               x

                                   3    2
               30.   y(x)+ B     2x – xt y(t) dt = f(x).
                              a
                     This is a special case of equation 2.1.55 with λ =2, µ = 2, and B = –2A.
                              x

                                   3    2
               31.   y(x) – A   4x – 3x t y(t) dt = f(x).
                             a
                     This is a special case of equation 2.1.55 with λ = 3 and µ =1.
                               x
                                    3      2      2
               32.   y(x)+     ABx – ABx t – Ax – B y(t) dt = f(x).
                            a
                                                                2
                     This is a special case of equation 2.9.7 with g(x)= Ax and λ = B.
                        Solution:
                                                          x
                                            y(x)= f(x)+    R(x – t)f(t) dt,
                                                        a
                                                                x
                                                      3
                                                  3
                                                                        3
                                                                            3
                                     2


                          R(x, t)=(Ax + B)exp    1  A(x – t ) + B 2  exp   1  A(s – t )+ B(x – s) ds.
                                              3                     3
                                                              t
                               x
                                    2       3    2
               33.   y(x)+     ABxt – ABt + At + B y(t) dt = f(x).
                            a
                                                               2
                     This is a special case of equation 2.9.8 with g(t)= At and λ = B.
                        Solution:
                                                          x
                                            y(x)= f(x)+    R(x – t)f(t) dt,
                                                        a
                                                                x
                                                                            3
                                                      3
                                     2
                                                                        3
                                                  3


                         R(x, t)= –(At + B)exp   1  A(t – x ) + B 2  exp    1  A(s – x )+ B(t – s) ds.
                                              3                     3
                                                              t
                 2.1-4. Kernels Containing Higher-Order Polynomials in x and t
                                x
                                     n
               34.   y(x)+ A    (x – t) y(t) dt = f(x),  n =1, 2, ...
                              a
                     1 . Differentiating the equation n + 1 times with respect to x yields an (n + 1)st-order linear
                      ◦
                     ordinary differential equation with constant coefficients for y = y(x):
                                               y x (n+1)  + An! y = f x (n+1) (x).

                     This equation under the initial conditions y(a)= f(a), y (a)= f (a), ... , y x (n) (a)= f x (n) (a)

                                                                        x
                                                                  x
                     determines the solution of the original integral equation.
                 © 1998 by CRC Press LLC
               © 1998 by CRC Press LLC
                                                                                                             Page 113
   129   130   131   132   133   134   135   136   137   138   139